
COD-04

C-Language Fundamentals

© 2024 Exceed Robotics TM

STUDENT NAME

© 2024 Exceed Robotics TM

TABLE OF CONTENTS

About this workbook .. i

Overview ... i

Using this workbook ... i

Week 1: Basic movement .. 1

What is Programming? .. 1

Getting started.. 2

Understanding the components of the robot... 2

Robot setup for this course .. 3

Creating your first program .. 4

Understanding The RobotC Layout .. 6

Basic Commands ... 8

Driving basics .. 8

Example: Driving basics ... 11

Using the forklift .. 11

Example: Using the forklift ... 13

Syntax – The Rules of Programming ... 14

What is Syntax? ... 14

Example: Finding Errors ... 16

In class exercises ... 17

Homework .. 19

What is the command? .. 19

What does it all mean? .. 20

Complete the code .. 21

Converting From Instructions to Code .. 22

Week 2 – Variables ... 23

What are variables? .. 23

Types of variables .. 23

Example: Types of Variables ... 24

How to create variables? ... 24

Example: How to create variables .. 24

 © 2024 Exceed Robotics TM

Visualizing computer memory .. 25

Using variables you create in your program .. 28

Updating your variables inside your code .. 32

Syntax for variables ... 35

In-Class Exercises .. 38

Homework .. 42

Check your understanding ... 42

Converting from instructions to Code ... 43

Fill in the memory box .. 45

Week 3 & 4 – If Statements .. 47

Display text on the Ev3 screen ... 47

What is conditional programming? .. 48

How do we write Boolean expressions? .. 48

Evaluating Boolean expressions ... 49

Boolean expressions with variables .. 50

What is an IF statement? ... 52

The structure of an IF statement ... 52

How does an IF Statement Work (Example 1) .. 53

How does an IF Statement Work (Example 2) .. 56

Example: Writing If Statements .. 58

Using the EV3 Buttons ... 59

Example using a button and IF statements. .. 61

Syntax for IF statements .. 62

In Class problems ... 65

Homework .. 68

Check your understanding ... 68

Coding Exercises ... 69

Week 5 – While loops .. 71

What are while loops? ... 71

Structure of While Loops.. 71

How do while loops work? ... 71

In-Class Exercises .. 81

© 2024 Exceed Robotics TM

Homework .. 84

Coding Exercises ... 84

Check your understanding ... 85

WEEK 6, 7 and 8 - Project ... 87

Introduction to the project .. 87

Background ... 87

Task 1 – Basic Program .. 87

Task 2 – Time-Saver! .. 88

Task 3 – Crate counters .. 88

i | P a g e © 2024 Exceed Robotics TM

ABOUT THIS WORKBOOK
OVERVIEW

This course booklet is designed to supplement the RobotC-Language classes at Exceed Robotics,
by providing reference materials, examples, and homework problems for extra practice. Students
are encouraged to use this booklet as a reference and complete the homework problems to both
further their understanding of the programming languages as well as develop their programming
skills.

Each week’s material is divided into three sections.

1. Class Summary
2. In class problems
3. Homework

The class summary section offers students an opportunity to review the core topics covered in the
weekly classes.

The In-class problems section describes the different problems the student should have solved
during the class.

The Homework section provides additional problems that can be used to assess the student’s
understanding of the material. The section consists of 4 different types of problems such as,

1. Multiple choice questions
2. Troubleshooting problems
3. Task-based problems
4. Projects

USING THIS WORKBOOK

One feature of this workbook is that it is editable. The homework section contains multiple-choice
questions, which require you to select the correct checkboxes. It also contains problems that
require you to type in their answers. Therefore, you must save your handbook so that you do not lose
your answers. To save your workbook at any time, you can use Ctrl+S for Windows or Cmd+S for
MacOS. When exiting, the handbook, you will also be prompted to save any unsaved changes

 1 | P a g e © 2024 Exceed Robotics TM

WEEK 1: BASIC MOVEMENT
WHAT IS PROGRAMMING?

Programming (or coding) is the process of creating sets of instructions that tell a computer what

to do. These instructions are written in a programming language, which is like a special type of

language that computers understand. Programmers use these instructions to create software,

apps, websites, and other digital tools that we use every day. In this course, we are going to learn

how to program robots.

To become good programmers, we need to think like computers and machines. You can think of

computers as very obedient pets. They will try to execute all the instructions that you give them

exactly [the way that you give them], so we need to be very careful about what we tell them to

do.

Let’s look at an example now. What sort of information would you give a robot so it follows the path
shown? How do we do it?

The commands we could give our robot are,

Step 1. Go Straight
Step 2. Turn Right 90 degrees
Step 3. Go Straight
Step 4. Turn Left 90 degrees
Step 5. Go Straight

Step 6. Turn Left 90 degrees
Step 7. Go Straight
Step 8. Turn Left 90 degrees
Step 9. Go Straight

 2 | P a g e © 2024 Exceed Robotics TM

Congratulations! You have just completed your first program. There are several programming
languages available (more than a thousand!). For this course, we will use RobotC, which is a
language that is used to program the Lego Mindstorms robots that we will use.

GETTING STARTED

UNDERSTANDING THE COMPONENTS OF THE ROBOT

The Lego Mindstorms EV3 robot that we program consists of several components. The picture
below shows all the different components that we will use in the next 3 terms.

Figure 1- Components of the Lego Mindstorms Ev3

Figure 2: The Lego Mindstorms EV3 Forklift

In this section, we will look at some of the components of the robot in a bit more detail.

 3 | P a g e © 2024 Exceed Robotics TM

THE EV3 BRAIN

The LEGO EV3 Brain is the central control unit that makes
everything work. It has 6 buttons and a screen that can be used
to navigate and find your programs. The buttons also can be
used to interact with your programs as we will find out later. It
also has 4 motor ports and 4 sensor ports.

LARGE MOTOR

The Large Motor is used for Moving robot wheels. It is continuous
which means it does not have any limits; it can keep spinning
forever. Our robot will have two large motors: One for the left wheel
and one for the right wheel.

MEDIUM MOTOR

The Medium Motor is used to move the arm/forklift up and down.
It is not continuous which means it does have limits; it can only
turn so far before it stops. Our robot will have one medium motor
which is used for controlling the arm.

We can also add sensors which the robot uses to understand the environment around it, but they
will not be covered until the next term.

ROBOT SETUP FOR THIS COURSE

The robot setup that we are going to use in this course consists of 2 large motors and 1 medium
motors. The figure below shows the wiring of the EV3 that we will use for this course.

 4 | P a g e © 2024 Exceed Robotics TM

CREATING YOUR FIRST PROGRAM

Now that we have covered the physical parts of the robot. Let’s now start programming. As we
discussed earlier, we are going to be using RobotC as our programming language. Follow the steps
to open RobotC:

Step 1. To get started, open the RobotC for LEGO Mindstorms application.

Port A:
LEFT

Port C:
RIGHT

Port B:
ARM

 5 | P a g e © 2024 Exceed Robotics TM

Step 2. Click on New File

Step 3. Ensure that the platform type is set correctly to Lego Mindstorms EV3

Step 4. Click on Motor & Sensor Setup

Step 5. In the Motors tab, enter the settings shown below and click Ok

Step 6. On the line just above task main, add the following line of code.

#include<exceeders.h>

 6 | P a g e © 2024 Exceed Robotics TM

Step 7. Your code should look like this

Step 8. Save your work by clicking on the Save icon.

UNDERSTANDING THE ROBOTC LAYOUT

RobotC for Lego Mindstorms is the application that we will use to write our programs and download
our programs to the robot. In this section, let’s look at look at what this application looks like.

There are three main parts of the layout that we want to look at,

1. Editor

 7 | P a g e © 2024 Exceed Robotics TM

The Editor is the area where we write our programs.

2. Toolbar

The toolbar consists of tools that we commonly use. Let’s take a look at each of these tools.

a) New File: This tool allows you to create a new program file.

b) Open File: This tool allows you to open previously saved files.

c) Save: This tool allows you to save your files in a specific location on your computer.

d) Fix Formatting: It makes your code easier to read by adding spaces and tabs to group different

blocks such as IF statements, WHILE Loops etc. together (We will look at this tool in action in a

later chapter)

e) Motor and Sensor Setup: This allows us to specify what EV3 Devices (motors and sensors) we

are using in our current program.

f) Compile Program: Used to check for errors in our program before we download it to the robot.

Any errors in the program are highlighted in the console.

g) Download to Robot: Used to download the program to the robot so that we can run our code.

Before Fix formatting After Fix formatting

 8 | P a g e © 2024 Exceed Robotics TM

3. Console

The console highlights errors in our code. It tells us the kind of error and line number that the error is
on.

For example, our code here has 1 Error and 3 Warnings

An Error (Red X) is something that stops our program from running, while a Warning (Yellow X) is a
mistake that we made that can affect our code. We should work to fix both errors and warnings!

In this case, we have an error on line 12, which you can see by the number 12 is on the left of our Red
X – this error says Undefined procedure ‘rotae’. This means that we made a spelling mistake – we
probably meant to write rotate instead of rotae, and our program is telling us just that.

We also have 3 warnings on lines 12, 13, and 15. The warnings on lines 12 and 15 tell us that the
program was expecting a ‘)’ before the ‘;’

BASIC COMMANDS

DRIVING BASICS

In this section, let’s look at the different commands for driving the robot. All these commands require
two pieces of information: Speed and Rotations

1. SPEED: how fast the robot will move as a percentage of max speed (-100 to 100)

2. ROTATIONS: how many rotations or steps do we want to move; how far (ex. 1, 0.5, 20)

Note: The value you use for speed should always be a whole number. Values such as 30, -20, 100
are all acceptable. However, you cannot use decimal values. On the other hand, the values used for
can be any number including decimal values

DRIVING STRAIGHT

To make the robot go straight we can use the straight function. The straight function is written as:

straight(speed, rotations);

 9 | P a g e © 2024 Exceed Robotics TM

For example, if want our robot to go forward really fast for 10 rotations we can write the command

straight (100, 10);

The straight command also works for negative values of speed. If the speed is negative the robot goes
backwards. For example, if we want our robot to go back 5 rotations slowly we can write straight (-
20, 5);.

When the straight(); command is used, both the left and right motors move in the same direction
and speed (either both forward or both backwards) as shown.

TURNING

To make the robot turn we use the rotate function. The rotate function is written as shown below,

For example, if we want our robot to turn clockwise really fast for 2 rotations we can write the
command :

rotate (100, 2);

The rotate command also works for negative values of speed. If the speed is negative the robot
turns in the Counterclockwise direction. For example, if we want our robot to turn
counterclockwise for 5 rotations slowly we can write rotate (-20, 5);.

When the rotate(); command is used, both the left and right motors move in the opposite direction
but with the same speed as shown.

rotate(speed, rotations);

 10 | P a g e © 2024 Exceed Robotics TM

DRIVE COMMAND

The drive command allows you to control both the left and right motor separately. This command
can give you more control over your robot in certain cases such as making your robot go in a curve.

For example if you want to have your robot curve, you can use the command:

drive(50, 40, 10);

When this command is used the robot’s left motor will move at a speed of 50%, it’s right motor will
move at a speed of 40% and both the motor will turn 10 rotations.

When the drive(); command is used, the speed and direction of both the left and right motors can be
controlled individually. You can have one motor moving at a speed of 50 and the other motor moving
at a speed of -25. Just like with the rotate the robot turns in the direction which has the slower speed.

DRIVE TABLE

The drive table below summarizes the number of rotations for your robot’s wheels required to move
a certain distance or to complete a turn.

drive(LSpeed, RSpeed, Rotations);

 11 | P a g e © 2024 Exceed Robotics TM

DRIVE STRAIGHT

Distance (cm) Motor Rotations

5 1

10 2

20 4

30 6

TURNING (SPIN)

Angle (deg) Motor Rotations

90 1.8

180 3.6

270 5.4

360 7.2

EXAMPLE: DRIVING BASICS
Task - Write a program to make the robot drive on the path shown.

In this example, we are going to make our robot go in the path
shown in the image.

We can break this problem into 3 parts. First, we need to go forward
100 cm. Next, we need to rotate clockwise 180 degrees. Finally, we
need to go forward 100 cm.

Looking at the tables above we can say that for 100 cm the number
of rotations required is 20 rotations. We can then look at the turning
table and say that to turn 180 degrees we need 3.6 rotations.

So, we can write the following code:

USING THE FORKLIFT

In this section, we are going to look at two commands that can be used to control forklifts.

task main ()

{

 straight(50, 20);

 rotate(50, 3.6);

 straight(50, 20);

}

 12 | P a g e © 2024 Exceed Robotics TM

Unlike the left and right motors, which are continuous motors (meaning they can theoretically rotate
forever), the forklift has a fixed range of movement. This means that there are minimum and
maximum position limits for the forklift. If you exceed these limits, the robot can break. Before we
can move the forklift to a specific position, we need the robot to calculate these limits. We can use
the calibrateLift(); command for this.

The motorPort value is the port on the robot brain where the arm motor is connected (in most cases
this will be port B). Therefore, you can use the following calibrateLift(); command to calibrate the
forklift calibrateLift(motorB);

Note:- It is extremely good practice to put the calibrateLift(); command as the first line in our
program if we want to use the forklift. Also, the forklift only needs to be calibrated once per program.

Once calibrated, you can use the liftTo(); command to move the arm motor to a specific position.
The liftTo(); command is written as shown below.

For example, if we want to move the arm up (i.e. 100%) at a speed of 20%, we can write:

NOTE: To move the arm down, you don’t need to use a negative value of speed in the liftTo ();
command. The command will automatically move the arm up or down using the new position that
we specify. For example, if we want to write a program where the arm goes up all the way (i.e. 100%)
and then gets lowered to 50% we can write the following code.

task main ()

{

calibrateLift(motorB);

liftTo(20, 100);

}

task main ()

{

calibrateLift(motorB);

liftTo(20, 100);

liftTo(20, 50);

}

calibrateLift(motorPort);

liftTo(Speed, Position);

 13 | P a g e © 2024 Exceed Robotics TM

EXAMPLE: USING THE FORKLIFT

Write a program to make the robot pick up a crate, go forward and then drop the crate on the
ground.

Since we are using the forklift in the program, we should first use calibrateLift(); to calibrate the
forklift. Next, let’s pick up the crate all the way up (i.e. 100%) slowly at a speed of 20%. Next, we want
to go forward 20cm. Looking at the drive table shown above, we can see that for 20 cm we need the
robot to go straight for 4 rotations. Finally, we want the arm to go all the way down (i.e. 0%). The code
for this program is shown below.

task main ()

{

 calibrateLift(motorB);

 liftTo(20, 100);

 straight(20, 4);

 liftTo(20, 0);

}

 14 | P a g e © 2024 Exceed Robotics TM

SYNTAX – THE RULES OF PROGRAMMING

WHAT IS SYNTAX?

All languages have rules. English, for example, has rules such as a sentence should end with a
period, a sentence should start with a capital letter etc. In spoken languages, this set of rules is
called grammar. Similarly, there are rules for programming languages. These rules are called Syntax.

In this section, we will discuss some of the important pieces of syntax that you should remember for
RobotC.

1. All statements (commands) should end with a semi-colon “;”

In programming languages like RobotC, a semi-colon tells the robot when a command has
ended. It's like putting a period at the end of a sentence in English. If a “;” is not added to our
code we will get the following warnings in the console.

2. Any bracket that is opened must be closed with a matching bracket “()”

There are different types of brackets used in RobotC. {} are used to group blocks of code or to
define the beginning and end of functions, loops, or conditional statements (we will learn what
these are later). () brackets are used when using functions or commands. It's crucial to ensure
that every opening bracket has a corresponding closing bracket to avoid syntax errors. For
instance, if you start a loop with “{“, you need to end it with “}” to define the scope of the loop.

task main ()

{

straight (50, 20);

rotate (50, 3.6);

straight (50, 20);

}

task main ()

{

straight (50, 20);

rotate (50, 3.6);

straight (50, 20)

}

 15 | P a g e © 2024 Exceed Robotics TM

3. Make sure your spelling of commands is correct

In programming languages, commands and keywords have specific spellings that must be
followed exactly. Misspelling a command can lead to errors in your code. It's essential to pay
attention to the spelling of commands and use them accurately.

As we continue our journey with RobotC we will add a few more items to our list of syntax.

task main ()

{

straight (50, 20);

rotate (50, 3.6);

straight (50, 20);

}

task main ()

{

straight (50, 20);

rotate 50, 3.6);

straight (50, 20)

task main () {

straight (50, 20);

rotate (50, 3.6);

straight (50, 20);

}

task main () {

straght (50, 20);

rotae (50, 3.6);

straight (50, 20)

}

 16 | P a g e © 2024 Exceed Robotics TM

EXAMPLE: FINDING ERRORS

Task – Look at the code shown. The code has a few errors. Find them and then rewrite this code.

So there are a few errors here

• In the first line, the opening round bracket “(“ does not have a matching “)” bracket
• In the second line, there are two errors.

o calibrateLift is spelled incorrectly
o there is no ‘;’ at the end of the statement

• In the third line straight is written in uppercase.
• In the fourth line, there is no closing “)” before the semi-colon.

Here is a rewritten correct piece of this code.

task main (>

{

calibeteLift(motorB)

STRAIGHT(50, 10);

rotate(25,3;

}

task main ()

{

calibrateLift(motorB);

straight(50, 10);

rotate(25,3);

}

 17 | P a g e © 2024 Exceed Robotics TM

IN CLASS EXERCISES

1. Write a program to have the robot drive on the path shown below

Write your code here:

task main()

{

}

 18 | P a g e © 2024 Exceed Robotics TM

2. Write a program to have the robot stack the crate on the top shelf.

Write your code here:

task main()

{

}

 19 | P a g e © 2024 Exceed Robotics TM

HOMEWORK

WHAT IS THE COMMAND?

In this exercise, you must fill in the blanks with the appropriate commands to control the robot's
movements and functions. Choose the correct commands to match each.

1. To make the robot go forward at a speed of 25% for 10 rotations.

straight(_____, _____);

2. To make the robot rotate right at a speed of 20% for 3 rotations.

rotate(_____, 3);

3. To calibrate the forklift

__________(motorB);

4. To move the forklift halfway up at a speed of 15%

__________(15, _____);

5. To make the robot go backwards at a speed of 60% for 20cm (need to convert cm to rotations)
__________(-60, _____);

6. To make the arm go all the way down at a speed 35%.

liftTo(_____, 0);

7. To make the robot turn left 90 degrees at a speed of 35.

rotate(_____, _____);

8. To make the robot do a full spin (360 degrees) clockwise at a speed of 50%.

rotate(_____, _____);

9. To make the robot do half of a spin (180degrees) counterclockwise at a speed of 75%

rotate(_____, _____);

 20 | P a g e © 2024 Exceed Robotics TM

WHAT DOES IT ALL MEAN?

Read each line carefully and describe what you think will happen when the robot executes the
provided commands. Consider factors like speed, direction, and any specific functions mentioned
in the code.

Write down your explanation for each line in the space provided.

straight(50,3);

rotate(-50, 3.6);

calibrateLift(motorB);

liftTo(25, 100);

straight(-100, 3.6);

rotate(-25,3.6);

 21 | P a g e © 2024 Exceed Robotics TM

COMPLETE THE CODE

Complete the code so that the robot can drive the path shown:

task main ()

{

straight (100, 8);

rotate (___ , 1.8);

straight (____ , 16);

straight (100, 12);

rotate (____, 1.8);

straight (100, 32);

rotate (______, 1.8);

straight (100, 12);

rotate (50, 1.8);

straight (____ , 16);

rotate (-50, ______);

straight(100 , _______);

}

 22 | P a g e © 2024 Exceed Robotics TM

CONVERTING FROM INSTRUCTIONS TO CODE

Read carefully the following instructions written in English. Convert them into RobotC code. Look
out, some commands give you the rotation value, while others require you to convert from
centimetres to rotations.

Instructions in English

1. Start of program
2. Calibrate the lift motor
3. Move forward for 10 rotations really fast
4. Move Arm to 100% at a slow speed
5. Turn right at a speed of 25% and for 90 degrees.
6. Move forward for 10cm slow
7. Move arm down to 50% at a slow speed
8. Move backward for 10cm fast
9. Turn left 90degrees at a speed of 25%
10. Move backward 10rotations fast
11. Move arm all the way to the end
12. End of program

RobotC code goes here

 23 | P a g e © 2024 Exceed Robotics TM

WEEK 2 – VARIABLES
WHAT ARE VARIABLES?

In programming, a variable can store a value that can be changed. Think of a variable like a box where
you can keep numbers or information that might change while you're running your program. By
changing what's in the box (the variable), your program can make smart choices based on new
information it gets while the robot is moving and doing tasks. In robotics, we often use these
variables to remember what the sensors on the robot are seeing. Then, based on what the sensors
tell us, the robot can decide what to do next. This helps the robot adapt to different situations and
perform tasks better.

Another great thing about variables is that you can use them over and over again for different parts
of your program. Once you store information in a variable, you can reuse that same variable in many
commands, which makes programming easier and your code cleaner. This means you don't have to
keep re-entering the same data; just use the variable wherever you need it!

TYPES OF VARIABLES

When you're programming, especially when working with variables, you need to know about data
types. Data types tell the computer what kind of data you plan to store in a variable and how the
computer should use it. There are four main data types in RobotC.

int (Integer) This data type is used for whole numbers, no decimal points
float (Floating Point) Use this data type for decimal numbers
bool (Boolean) This data type can only hold one of two states (True/False, 0/1, on/ off)
char (Character) This data type is for storing single characters

Data Types Description Example

int Integer (whole numbers only) 1, 2 , 0 , -1

float
Real numbers

(contain decimal point)
3.14, -0.25, 2.0

bool Binary T/F or 1/0

char Character ‘a’ , ‘!’ , ‘@’

 24 | P a g e © 2024 Exceed Robotics TM

EXAMPLE: TYPES OF VARIABLES

What type of variable would you use to store the following pieces of information?

• The speed at which a robot is going forward
• The name of the robot ‘R’
• The number of rotations that a robot should turn

To answer this question, we need to think about what values we expect to store in each of these
values. We discussed in the previous chapter that the values for speed should always be a whole
number and that decimal values are not accepted. Therefore, we should use an int type when
creating this variable.

To store the name of the robot inside a variable we need to use a char type variable.

We also discussed in the previous chapter, that the value for rotations can be any type of number
including decimals. Hence, we will use the float type for this.

HOW TO CREATE VARIABLES?

To create a variable there are two steps;

Step 1. Declare a variable

To declare a variable, you need to specify the type of variable and the name of the variable.

Step 2. Assign data to a variable

Once we have declared a variable, we can now assign a value to it. To assign data to a variable,
we can use the = symbol (“assignment operator”).

EXAMPLE: HOW TO CREATE VARIABLES

Write a program where we create 2 variables, mySpeed which needs to be assigned a value of 50,
and myPi which needs to be assigned a value of 3.14.

We can start this program by declaring the variables mySpeed and myPi. The type of the variable
mySpeed will be an Integer since the value we are storing is 50, which is a whole number. The type
of the variable myPi will be a float since the value we are storing is 3.14.

Type VariableName;

VariableName = Value;

 25 | P a g e © 2024 Exceed Robotics TM

Next, let’s assign the specific values to the two variables. We can use the assignment operator “=”
for this. The code for this program is shown below.

VISUALIZING COMPUTER MEMORY

So far, we have looked at how we can declare variables and assign values to variables. Let’s now try
and understand what happens inside the computer when you create a variable.

Just like the human brain, the computer also stores information in its memory. You can think of the
computer memory as a table that contains 3 columns: Name, Type and Value. We will call this table
the Memory Box. This a powerful technique that you can use when you are troubleshooting (finding
errors) in your program.

Variable Name Variable Type Variable Value

bob int 25

myRotations float 3.14

In the above memory box, you can see that we have two variables: an int variable called bob with a
value of 25 and a float variable called myRotations with a value of 3.14.

1. Let’s look, step by step at how this memory box gets filled. Let’s look at the code below. The
arrow shows you what line of code the computer is now trying to execute.

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

 26 | P a g e © 2024 Exceed Robotics TM

As you can the program is at the beginning of the code. At this time the memory box will be empty.

Variable Name Variable Type Variable Value

2. Since there is no code to execute, the program will move to the next line of the program.

This line tells the computer to create an integer variable called mySpeed. This will get added to
the Memory Box.

Variable Name Variable Type Variable Value

mySpeed int

3. Note that mySpeed still does not have a value attached to it. Since the computer has executed
this line let’s move to the next line.

Like the previous line, this line asks the computer to create a float variable called myPi. Let’s add
this to our Memory Box.

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

 27 | P a g e © 2024 Exceed Robotics TM

Variable Name Variable Type Variable Value

mySpeed int

myPi float

4. Let’s move on to the next line.

In this line, we are telling the computer that we want to assign a value of 50 to the variable mySpeed.
Let’s add this piece of information to our memory box.

Variable Name Variable Type Variable Value

mySpeed int 50

myPi float

5. Let’s move on to the next line.

In this line, we are telling the computer that we want to assign a value of 3.14 to the variable myPi.
Let’s add this piece of information to our memory box.

Variable Name Variable Type Variable Value

mySpeed int 50

myPi float 3.14

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

 28 | P a g e © 2024 Exceed Robotics TM

6. Let’s move on to the next line.

At this point, we have reached the end of the program. There is nothing left to execute.

Using the memory box is a powerful technique that you should use if you are running into any errors
in your program.

USING VARIABLES YOU CREATE IN YOUR PROGRAM

Since we have now created variables. Let’s look at how to use them with the drive commands that
we learned such as straight();, rotate();, and liftTo();.

Let’s continue working on the previous piece of code and add some commands to it. The previous
code and the memory box looked like this:

Variable Name Variable Type Variable Value

mySpeed int 50

myPi float 3.14

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

}

 29 | P a g e © 2024 Exceed Robotics TM

7. At the end of our original code, let’s add a straight command.

What do you think will happen when the computer tries to execute this line? Does it know what
mySpeed is? Yes, according to the computer memory, the value of mySpeed is 50. So before
running the straight command, the computer will replace the variable name mySpeed with its value
which is 50. This will look something like this:

The computer will now execute the straight command, which will cause the robot to go forward for 2
rotations at a speed of 50%

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(50, 2);

}

 30 | P a g e © 2024 Exceed Robotics TM

8. Let’s add another line to turn with our robot:

What do you think will happen now? Is there a variable called myPi? Does it have a value? Yes, there
is a variable called myPi and it has a value of 3.14. Before executing this line, the computer will
replace the variable name myPi with its value – which is 3.14. This would look something like this.

The computer will now execute the rotate command, which will cause the robot to rotate clockwise
for 3.14 rotations at a speed of 20%.

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

 rotate(20, myPi);

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

 rotate(20, 3.14);

}

 31 | P a g e © 2024 Exceed Robotics TM

9. Let’s try something different else:

 What do you think will happen now? Does the program know what mySpeed and myPi are? What is
going to happen to the negative symbol before mySpeed? Well, let’s use the same logic that we used
before and replace the variable names with their values. What would that look like?

Aha! This looks like straight with a negative value for speed. This should make the robot go backwards
at a speed of 50% for 3.14 rotations.

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

 rotate(20, myPi);

 straight(-mySpeed, myPi);

}

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

 rotate(20, myPi);

 straight(-50, 3.14);

}

 32 | P a g e © 2024 Exceed Robotics TM

10. Let’s try something different now. Let’s try to use a variable that does not exist:

What do you think will happen now? Does the program know the value of liftingSpeed? No. Since
the computer does not know the value of liftingSpeed it will give an error (see below).

At this point, we have reached the end of the program. There is nothing left to execute.

UPDATING YOUR VARIABLES INSIDE YOUR CODE

Variables are very useful because we can change the values stored inside them whenever we want.
Let’s look at the following example.

1. In the first line, we are creating a variable called speed123. The type of the variable will be
set to int. In the next line, we will assign speed123 with a value of 25. At this point, the
memory box looks like this.

task main ()

{

 int mySpeed;

 float myPi;

 mySpeed = 50;

 myPi = 3.14;

 straight(mySpeed, 2);

 rotate(20, myPi);

 straight(-mySpeed, myPi);

 liftTo(liftingSpeed, 50);

}

task main ()

{

 int speed123;

 speed123 = 25;

 straight(speed123, 2);

 speed123 = 50;

 straight(speed123, 4);

}

 33 | P a g e © 2024 Exceed Robotics TM

Variable Name Variable Type Variable Value

speed123 int 25

2. Let’s move on to the next line.

This line of code will make the robot go forward at a speed of 25 for 2 rotations.

3. Let’s move on to the next line:

In this line, we are assigning the value of speed123 to 50. This will change the value stored
inside the memory box.

Variable Name Variable Type Variable Value

speed123 int 50

task main ()

{

 int speed123;

 speed123 = 25;

 straight(25, 2);

 speed123 = 50;

 straight(speed123, 4);

}

task main ()

{

 int speed123;

 speed123 = 25;

 straight(speed123, 2);

 speed123 = 50;

 straight(speed123, 4);

}

 34 | P a g e © 2024 Exceed Robotics TM

4. Let’s move on to the next line:

Since the value of speed123 is now 50, this line would make the robot move forward at a speed of
50 for 4 rotations.

At this point, we have reached the end of our program. Notice how by changing the value stored
inside a variable we were able to make the robot go forward at two different speeds. First at a speed
of 25 and then at a speed of 50.

task main ()

{

 int speed123;

 speed123 = 25;

 straight(speed123, 2);

 speed123 = 50;

 straight(50, 4);

}

 35 | P a g e © 2024 Exceed Robotics TM

SYNTAX FOR VARIABLES

In the previous chapter, we introduced the idea of Syntax. We said that a Syntax is programming rule
and discussed four pieces of Syntax. Let’s add a few more to it.

1. Variable names can include numbers and letters but no special characters

Variable names are like identifiers used by the computer to store and retrieve data. They can
consist of alphanumeric (mix of letters and numbers) characters but should not contain any
special symbols such as punctuation marks or emojis. For example, names such as myVariable
and playerScore are allowed. However, names such as my$Variable and player#Score are not
allowed.

2. Variable names must always start with a letter

Variable names must begin with a letter of the alphabet. They cannot start with a number. For
example, names such as x1 and speed123 are allowed. However, 1stPlace and 123Bob are not
allowed.

task main () {

 int mySpeed;

 int playerScore;

}

task main () {

 int my$Variable;

 float player#Score;

}

task main ()

{

 int speed123;

 int rotations5;

}

task main ()

{

 int 123speed;

 float 123abc;

}

 36 | P a g e © 2024 Exceed Robotics TM

3. Variable names must not contain spaces (however underscore is allowed)

Variable names should not contain any spaces. While spaces are not permitted, underscores
can be used to separate words within a variable name.

4. Variable names must be unique (no duplicates, even if they are different types)

Each variable must have a unique name. This ensures clarity and avoids confusion when we are
using variables within a program, regardless of their data types.

task main ()

{

 int driveSpeed;

 int playerScore;

}

task main ()

{

 int drive speed;

 float player score;

}

task main ()

{

 int driveSpeed;

 float driveRotations;

}

task main ()

{

 int drive;

 float drive;

}

 37 | P a g e © 2024 Exceed Robotics TM

5. Variable names should give the programmer hints as to what is stored inside them

Variables names that describe what is stored inside them, make it easier to read code. They act
as labels, helping the programmer understand what is getting stored in the variable and how it is
used. For example, if we want to create a variable that stores the number of rotations that the
robot moves forward, a good variable name would be forwardRotations.

task main ()

{

 int driveRotations;

 int turnRotations;

}

task main ()

{

 float rotations1;

 float rotations2;

}

 38 | P a g e © 2024 Exceed Robotics TM

IN-CLASS EXERCISES

1. Let's dive into a programming adventure with your robot! Your mission is to code your robot to
travel back and forth, carrying a crate. The twist? You'll be using a variable named mydistance
to tell your robot how far to go.

a. Write a program that makes the robot follow the path shown and pick up the crate.
Use a variable called mydistance to control how far your robot goes
forward/backwards.

task main()

{

}

 39 | P a g e © 2024 Exceed Robotics TM

b. Next, by changing only one line of your program make the robot follow the modified
path shown below

task main()

{

}

 40 | P a g e © 2024 Exceed Robotics TM

2. Write a program to have your robot pick up and place the crate on the top shelf. Use a

variable to control how far the robot moves forward/backwards. You can call this variable
distance

task main()

{

}

 41 | P a g e © 2024 Exceed Robotics TM

3. In the program that you wrote for the previous task add a second variable that controls the
speed at which your robot moves forward/backwards

task main()

{

}

 42 | P a g e © 2024 Exceed Robotics TM

HOMEWORK

CHECK YOUR UNDERSTANDING

Read each code carefully and answer the questions

1. Code #1

a. How many variables are created in the code above?

b. What is the type of the variable myFwdSpeed?

c. What is the type of the variable isItRaining?

d. What does the line “bool isItRaining” do?

e. Something is wrong with myBwdDistance. Can you figure it out? (Hint: What type should
it be?) Fix the issue and enter the correct line of code below.

task main ()

{

int myFwdSpeed;

bool isItRaining;

myFwdSpeed = 25;

int myBwdDistance;

myBwdDistance = 3.5;

}

 43 | P a g e © 2024 Exceed Robotics TM

2. Code #2

a. How many int variables are there in the code above?

b. At what speed will the robot go forward when the code runs?

c. The robot will turn clockwise. Is this statement True or False:

d. How many rotations will the robot turn?

e. What is the turning speed of the robot?

CONVERTING FROM INSTRUCTIONS TO CODE

Read carefully the following instructions written in English. Convert them into RobotC code. Look
out, some commands give you the rotation value, while others require you to convert from
centimetres to rotations.

Instructions in English

1. Start of program
2. Create an integer variable called drivingSpeed

task main ()

{

int a;

float b;

int c;

a = 25;

b = 3.5;

c = a + 5;

straight(a, 5);

rotate(-c, b);

}

 44 | P a g e © 2024 Exceed Robotics TM

3. Create an integer variable called turningSpeed
4. Create a float variable called driveRotation
5. Create a float variable called turnRotations
6. Set the value of drivingSpeed to be 100
7. Set the value of turningSpeed to be 25
8. Set the value of driveRotation to 4.0
9. Set the value of turnRotation to the rotations needed for a 90degree turn
10. Make the robot go forward at drivingSpeed for driveRotations.
11. Make the robot turn 90 degrees using turningSpeed and turnRotation.
12. End of program

RobotC code goes here

 45 | P a g e © 2024 Exceed Robotics TM

FILL IN THE MEMORY BOX

Read each code carefully and fill in the values for how the memory box will look like at the end of the
program.

1. Code #1

Variable Name Variable Type Variable Value

2. Code #2

task main ()

{

 int myDist;

 float turningRot;

 char myName;

 myDist = 25;

 turningRot = 6.5;

 myName = “A”;

}

task main ()

{

 int num1;

num1 = 5;

float pi;

pi = 3.14;

char letter;

letter = 'A';

num1 = 7;

pi = 3.14159;

}

 46 | P a g e © 2024 Exceed Robotics TM

Variable Name Variable Type Variable Value

 47 | P a g e © 2024 Exceed Robotics TM

WEEK 3 & 4 – IF STATEMENTS
DISPLAY TEXT ON THE EV3 SCREEN

In earlier chapters, we explored the concept of computer memory as an imaginary "memory box."
This box organizes and stores the names, values, and types of variables we've created. One problem
with this memory box is that it is not visible. It would be incredibly helpful to be able to see the values
of these variables right on the EV3 screen. To do this, we can use specific commands to display text.

1. Displaying just text

This command is used to display text on the EV3 screen. You need to specify the lineNumber and
the text. The EV3 screen is organized into six lines, numbered from 0 to 5. The lineNumber
determines which line the text will appear on. When writing the text, make sure to enclose it in double
quotes. For instance, to display the “Hello World" on the first line, you can use the following code:

2. Displaying variable value

This command is designed to display the value of a variable. For example, if you have a variable
named myAge with the value 25, you can show this value on the EV3 screen with printVar. Here's
how you might write the code:

print(lineNumber, text);

task main ()

{

 print(0, “Hello World”);

}

printVar(lineNumber, Variable);

 48 | P a g e © 2024 Exceed Robotics TM

WHAT IS CONDITIONAL PROGRAMMING?

So far, the programs we've written have been straightforward, with the robot following a series of
commands in sequence. But what if we need the computer to make decisions based on the situation
at hand?

Let's consider an example of a car at an intersection controlled by a traffic light. Depending on the
colour of the traffic light, the actions the car should take will vary. If the light is red, the car needs to
stop. If it's yellow, the car should slow down, and if it's green, the car can proceed forward. How do
we add this "intelligence" to our robots, so that it performs specific actions only under certain
conditions? This is what is known as conditional programming.

To write a conditional program, we need to first learn Boolean expressions. Boolean expressions are
statements that evaluate to either True or False. You can think of Boolean expressions as questions
that we are asking the computer. However, these can only be True or False questions. For example,
questions like Is it raining? is the light red? Etc.

Once we have the Boolean expressions written we can use them with IF statements to write a
conditional program. Here is an example of a conditional program.

In the above program, the text shown in green is the conditionals and the text shown in blue are the
actions taken if the Boolean expressions evaluate to True. According to the above program If it rains
then we should carry an umbrella. On the other hand, if it NOT raining then we should wear shorts.

HOW DO WE WRITE BOOLEAN EXPRESSIONS?

task main (){

 int myAge;

 myAge = 25;

 printVar(2, myAge);

}

IF (it is raining) then

Carry an umbrella

IF (it is NOT raining) then

 Wear shorts

 49 | P a g e © 2024 Exceed Robotics TM

As we have just learned, Boolean expressions are statements that evaluate to True or False. To write
Boolean expressions we follow the following format.

Boolean operators are used for comparison. There are several boolean operators available,

• Equals to (==)

• Not equal to (!=)

• Less than (<)

• More than (>)

• Less than or equal to (<=)

• More than or equal to (>=)

Let’s take a look at some examples.

To check if 5 is equal to 5 we can write the following

To check if 10 is not equal to 25, we can write the following

To check if 63 is greater than 56, we can write the following

EVALUATING BOOLEAN EXPRESSIONS

As we discussed earlier Boolean expressions return only boolean values, either True or False. So let's
look at some conditions and try to figure out what they would return.

Let’s take the following code.

The Boolean expressions is checking whether 200 is less than or equal to 300. In this case the
Boolean expressions will evaluate to True since 200 is less than 300.

 Let’s try another one.

Item 1 Boolean Operator Item 2

5 == 5

10 != 25

63 > 56

200 <= 300

71 >= 80

 50 | P a g e © 2024 Exceed Robotics TM

The Boolean expressions above is checking whether 71 is more than or equal to 80. In this case, the
Boolean expressions will be evaluated as False, since 71 is less than 80.

Let’s try a more complex one.

This Boolean expression requires an additional simplification step. Before we check the conditional
we want to simplify the terms on the right and left side of the boolean operator. We can replace the
expression on the Left-Hand side with 52 because 22 + 30 gives you 52. We can replace the
expression on the Right-Hand side with 42 because 45 – 3 gives you 42. Let’s make these changes.

Ah, much better. We can evaluate this much more easily. The conditional is checking whether 52 is
more than 42. In this case the conditional will result in True.

BOOLEAN EXPRESSIONS WITH VARIABLES

When programming we need to use Boolean expressions that check the values of the variables. Let’s
take a look at an example of this. Here is a piece of code written in RobotC.

In the first two lines, we create a int variable called mySpeed and set its value to 25. Let’s add this
information to our memory box.

Variable Name Variable Type Variable Value

mySpeed int 25

Let’s look at the next line.

22 + 30 > 45 -3

52 > 42

task main() {

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = mySpeed < 50;

}

 51 | P a g e © 2024 Exceed Robotics TM

In this line, we create a Boolean variable called myExpression. Let’s add this to our memory box.

Variable Name Variable Type Variable Value

mySpeed int 25

myExpression bool

Let’s move to the next line.

Just like we did before when working with variables, we want to start by replacing the variable names
with their values. This will look something like this.

Now let’s evaluate the boolean expression: is 25 less than 50. Since 25 is less than 50, this
conditional evaluates to True. We can replace the conditional expression with its value. This would
look something like this.

task main (){

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = mySpeed < 50;

}

task main (){

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = mySpeed < 50;

}

task main (){

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = 25 < 50;

}

 52 | P a g e © 2024 Exceed Robotics TM

Let’s also update the memory box after the previous statement.

Variable Name Variable Type Variable Value

mySpeed int 25

myExpression bool true

At this point, we have reached the end of our program so our program will exit.

WHAT IS AN IF STATEMENT?

An "IF statement" in programming is a powerful tool that enables you to make decisions based on
conditions. It allows your robot to perform different actions depending on whether certain conditions
are met or not. By using IF statements, you can add intelligence to your robot, making it respond to
different events.

THE STRUCTURE OF AN IF STATEMENT

An IF statement has two parts: A conditional and the actions.

task main (){

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = true;

}

task main (){

 int mySpeed;

 mySpeed = 25;

 bool myExpression;

 myExpression = true;

}

 53 | P a g e © 2024 Exceed Robotics TM

The conditional consists of one or more Boolean expressions (we can do more than one, as we will
see later). In the actions section, we specify the different actions we want to complete if the Boolean
expression evaluates to True. The above IF statement checks if the value stored inside myVariable
is less than 10. If true, the robot will go straight at a speed of 50% for 2 rotations.

HOW DOES AN IF STATEMENT WORK (EXAMPLE 1)

In this section, we want to take a look at how an IF statement works. Take a look at the code below
and let’s see how it works.

1. In the lines highlighted we create an int variable called myNumber and store the number 12. Let’s
add this to the memory box and then move onto to the next line.

Variable Name Variable Type Variable Value

myNumber int 12

if (myVariable < 10)

{

 straight(50, 2);

}

Conditional

Actions

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10){

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

 54 | P a g e © 2024 Exceed Robotics TM

2. We are at an IF statement. We can start by evaluating the boolean expression. To simplify this
expression, let’s replace the variable myNumber with its value. From our memory box we know
that the variable myNumber has a value of 12.

3. Now let’s evaluate the boolean expression. The expression is checking whether 12 is greater than
or equal to (>=) 10. This expression will be True, since 12 is greater than or equal to 10. Since the
expression is True, the program will move inside the actions part of the IF statement.

4. As you can see the pointer has moved inside the actions. The program will perform each of the

actions specified inside the actions. Let’s move on to the next line.

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10){

 print(2, “Woah! Big Number”);

 }

straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 12;

 if (12 >= 10){

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

straight(100, 2);

}

 55 | P a g e © 2024 Exceed Robotics TM

5. In this line, we are printing the text “Woah! Big Number” on line 2 of EV3 screen. Let’s move to
the next line.

6. On this line, we have performed all the actions inside the IF statement. The program will move

outside the IF statement. Let’s move to the next line.

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

Woah! Big Number

0

1

2

3

4

5

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

 56 | P a g e © 2024 Exceed Robotics TM

7. This line would cause the robot to go forward really fast for 2 rotations. Let’s move on to the next
line.

8. At this point we have reached the end of our program.

Let’s summarize what happened. The IF statement checked if the value of myNumber is greater than
or equal to 10. Since this was True, the robot performed the actions inside the IF statements. In this
example, we only had 1 action inside the IF statement which displays the text “Woah! Big Number”
on line 2 of the EV3 screen. Next the program exists the IF statement and performs any code present
outside of the IF statement. In this case there is one command after the IF statement. This command
moves the robot forward at a speed of 100% for 2 rotations.

HOW DOES AN IF STATEMENT WORK (EXAMPLE 2)

Let’s look at an example where the conditional part of the IF statement is False. We will work on the
same code as the previous example but make one change. Let’s walkthrough what happens.

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

 57 | P a g e © 2024 Exceed Robotics TM

1. Instead of assigning the variable a value of 12 let’s change it to 5. Here is what the code and the
memory box would look like. Let’s move on to the next line

2. We are at an IF statement. We can start by evaluating the boolean expression. To simplify this
expression, let’s replace the variable myNumber with its value. From our memory box we know
that the variable myNumber has a value of 5.

Variable Name Variable Type Variable Value

myNumber int 5

task main(){

 int myNumber;

 myNumber = 5;

 if (myNumber >= 10){

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 5;

 if (myNumber >= 10){

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 5;

 if (5 >= 10){

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

 58 | P a g e © 2024 Exceed Robotics TM

3. Now let’s evaluate the boolean expression. The expression is checking whether 5 is greater than
or equal to 10. This expression will be False, since 5 is NOT greater than or equal to 10. Since the
expression is False, the program will move to the end of the IF statement.

4. At this point we have reached the end of the IF statement. Let’s move to the next line.

5. In this line, the robot will move forward at 100% speed for 2 rotations. Let’s move on to the next
line.

EXAMPLE: WRITING IF STATEMENTS

Task: Add an IF statement to the program
shown, which checks if the value stored inside
the variable myNumber is less than 20. IF the
variable is less than or equal to 20, the program
should print “It is a small number” on line 2 of
the EV3 screen.

task main(){

 int myNumber;

 myNumber = 5;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 5;

 if (myNumber >= 10)

{

 print(2, “Woah! Big Number”);

 }

 straight(100, 2);

}

task main(){

 int myNumber;

 myNumber = 12;

}

 59 | P a g e © 2024 Exceed Robotics TM

Let’s start by looking at the conditional. The Boolean expression to check if myNumber is less than
or equal to 20 can be written as – myNumber <= 20. Next, we can add the actions that we want to
perform. In this task, we want to display the text “It is a small number” on line 2 of the Ev3 screen.
We can use the print(); command for this.

Here is the final code for this task.

USING THE EV3 BUTTONS

The Lego Mindstorms EV3 brain has a total of 5 buttons (actually 6 but the back button doesn’t
count). We can use the EV3 buttons to interact with the programs that we write. One of the
commands used to interact with the EV3 robot is shown below.

 The waitForButton(); command can be used to get the button values from the robot. This value can
be then stored inside a variable.

So what does the waitForButton(); command do? The command does 3 things. First, it stops the
program. The robot will stop, and no other code will be executed in the meantime. Next, the buttons
on the robot Ev3's brain will start blinking red. This indicates that the program is waiting for us to
press one of the buttons. Finally, when we press the button, the command returns the value assigned
to that button. Let’s look at an example of using the Ev3 buttons.

Let’s look at the following code.

task main(){

 int myNumber;

 myNumber = 12;

 if (myNumber <= 20){

 print(2, “It is a small number”);

 }

}

waitForButton();

task main (){

 int myButton;

 myButton = waitForButton();

}

1

 60 | P a g e © 2024 Exceed Robotics TM

At the start of our program, the memory box is empty.

Variable Name Variable Type Variable Value

Let’s move to the next line.

In this line, we declare an integer variable called myButton. Let’s look at what this does to the
memory box.

Variable Name Variable Type Variable Value

myButton int

Let’s move to the next line.

In this line, the computer sees the waitForButton() command. Let’s recall what we said the
command does. First, it stops the program and the robot. Next, it makes the Ev3 lights blink red.
Finally, it returns the number associated with the button that we pressed.

task main (){

 int myButton;

 myButton = waitForButton();

}

task main (){

 int myButton;

 myButton = waitForButton();

}

 61 | P a g e © 2024 Exceed Robotics TM

Let’s say that we press the middle button. This button has a value of 2. The command then returns
this value. This means that the entire waitForButton(); command can be replaced by the number 2.

Now what do you think the code does? It assigns the value of 2 to the variable myButton.

Variable Name Variable Type Variable Value

myButton int 2

We can use the buttons to interact with the program and perform different sets of actions when
different buttons are pressed.

EXAMPLE USING A BUTTON AND IF STATEMENTS.

Task: Write a program that uses the Ev3 buttons and IF statements. IF button 1 is pressed the
robot should move forward one rotation. IF button 2 is pressed the robot should move backward
one rotation.

We start the program by creating a variable to store the button values that we get. We can call this
variable myButton and make this of type int.

We can now add the waitForButton(); command now.

Now that we have the variable setup and the program reading from the Ev3 brain we can write our IF
statements.

task main (){

 int myButton;

 myButton = 2;

}

task main(){

 int myButton;

}

task main(){

 int myButton;

 myButton = waitForButton();

}

 62 | P a g e © 2024 Exceed Robotics TM

Our 1st IF statement needs to check if button 1 is pressed and make the robot move forward if this is
the case. The conditional for this IF statement can be written as “myButton == 1”. The action for this
IF statement just contains the straight command. This IF statement can be written as shown.

Similarly, we need to add another IF statement, which checks if button 2 is pressed and makes the
robot go backwards.

SYNTAX FOR IF STATEMENTS

Let’s add a few more Syntax rules to keep in mind for IF statements.

1. Enclose Conditions in Parentheses

Make sure that the condition in your IF statement is surrounded by parentheses, like this: (and). This
tells the computer exactly what to check before deciding what to do next.

task main(){

 int myButton;

 myButton = waitForButton();

 if (myButton == 1){

 straight(50, 1);

 }

}

task main(){

 int myButton;

 myButton = waitForButton();

 if (myButton == 1){

 straight(50, 1);

 }

if (myButton == 2){

 straight(-50, 1);

 }

}

 63 | P a g e © 2024 Exceed Robotics TM

2. Wrap Actions in Braces

Always put the actions that should happen if the condition is true inside braces, { and }. This helps
you keep your actions neatly together, making it easier to see what belongs inside the IF statement.

3. No Semicolons on the IF Line

Remember, do not put a semicolon ; right after the IF condition. Most lines in coding need a
semicolon, but the IF statement is different. If you put a semicolon right after the IF condition, the
computer gets confused and doesn't do what you want.

task main ()

{

 if (5 < 6)

 {

 straight(50,1);

 }

}

task main ()

{

 if (5 < 6

 {

 straight(50,1);

 }

}

task main ()

{

 if (5 < 6)

 {

 straight(50,1);

 }

}

task main ()

{

 if (5 < 6)

 straight(50,1);

 }

}

 64 | P a g e © 2024 Exceed Robotics TM

task main ()

{

 if (5 < 6)

 {

 straight(50,1);

 }

}

task main ();

{

 if (5 < 6)

 straight(50,1);

 }

}

 65 | P a g e © 2024 Exceed Robotics TM

IN CLASS PROBLEMS

1. Write a program to drive forward, then wait until a button is pressed.
a. If the left button is pressed, turn left
b. If the right button is pressed turn right.

Afterward, continue driving straight

task main()

{

}

 66 | P a g e © 2024 Exceed Robotics TM

2. Write a program to choose what shelf to place the crate on

a. If the Up button is pressed, Place the crate on the top shelf

b. If the Down button is pressed, Place the crate on the bottom shelf

Additionally, your program must include a variable to control speed!

task main()

{

}

 67 | P a g e © 2024 Exceed Robotics TM

3. Include the left and right buttons to allow the robot to pick up the crate from either shelf

a. If the right button is pressed, pick up the crate on the top shelf

b. If the left button is pressed, pick up the crate on the bottom shelf

task main()

{

}

 68 | P a g e © 2024 Exceed Robotics TM

HOMEWORK

CHECK YOUR UNDERSTANDING

1. What are the three actions that take place when the robot reaches a line that says the
following?

myButton = waitForButton();

2. What does the following line do?

print(2, “Hello There!”);

3. What does the following line do?

printVar(2, mySpeed);

4. What does the expression below check?

25 > 30

5. Look at the code below. What will happen when the code runs?
int myNumber;

myNumber = 90;

if (myNumber == 90)

{

print(1, “The number is 90”);

}

if (myNumber < 100)

{

print(2, “The number is small”);

}

 69 | P a g e © 2024 Exceed Robotics TM

6. Is the value of the Boolean Variable check True or False?

CODING EXERCISES

1. Add two IF statements to the code below
a. First one should check if the userNumber is equal to secretNumber. If it is True, we

should print “You guessed the correct number”
b. The second IF statement should check if userNumber is NOT equal to secretNumber.

If this is the case, we should print “Wrong number! Try again.”

int myNumber;

myNumber = 90;

bool check;

check = myNumber < 100;

task main()

{

int userNumber;

int secretNumber;

secretNumber = 20;

userNumber = 20;

}

 70 | P a g e © 2024 Exceed Robotics TM

2. Write a program that first gets which button is pressed.
a. If Button is 1 – The robot should go forward 1 rotation
b. If Button is 3 – The robot should go backward 1 rotation
c. If Button is 4 – The robot turns right 90 degrees
d. If Button is 5 – The robot turns left 90 degrees

task main()

{

}

 71 | P a g e © 2024 Exceed Robotics TM

WEEK 5 – WHILE LOOPS
WHAT ARE WHILE LOOPS?

In programming, a WHILE loop is a type of loop that runs while a certain condition is met.

A WHILE loop in programming keeps running as long as a certain condition is true. It’s like a repeating
IF statement.

Building on what we learned about IF statements from the previous chapter, where we saw how a
program can decide based on whether a condition is true or not:

A WHILE loop relates closely to an IF statement in that it repeatedly checks if a condition is true.
With an IF statement, if the condition is true, the robot performs the action just once. But with a
WHILE loop, if the condition is true, the robot will perform the action, then recheck the condition,
and if it's still true, it will perform the action again. This keeps repeating continues until the condition
becomes false. The WHILE loop can run many times, whereas an IF statement only runs once for
each time it's encountered in the program's flow.

STRUCTURE OF WHILE LOOPS

The structure of a WHILE loop is similar to an IF statement. It has two parts conditional and actions.

The conditional consists of one or more Boolean expressions (we can do more than one as we will
see later). In the actions, we specify the different actions we want to complete if the Boolean
expression evaluates to True. The above WHILE loop checks if the value stored inside myVariable is
less than 10. While this is true, the robot will keep going straight at a speed of 50% and for 2 rotations.

HOW DO WHILE LOOPS WORK?

To understand how WHILE loops work, let’s look at an example.

while (myVariable < 10)

{

 straight(50, 2);

}

Conditional

Actions

 72 | P a g e © 2024 Exceed Robotics TM

The first line declares an int variable called myNumber. In the next line, the variable myNumber is
assigned a value of 0. Let's add this to the memory box.

Variable Name Variable Type Variable Value

myNumber int 0

Let’s move on to the next line.

In this line, we have the conditional part of our while loop. The Boolean expression is checking
whether myNumber is less than 3. Is this True or False? It is True because 0 is less than 3. Let’s
replace the expression with True.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 73 | P a g e © 2024 Exceed Robotics TM

Since the conditional is True, the computer will perform the actions inside the loop.

The first action inside this WHILE loop is a straight command. This would make the robot go forward
at a speed of 25% for 2 rotations. Let’s move to the next line.

Let’s try and understand what this line does. Let’s try and simplify this expression by replacing the
variable myNumber on the left-hand side with its value. This would look something like this.

task main(){

 int myNumber;

 myNumber = 0;

 while (true){

 straight(25,2);

 myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 74 | P a g e © 2024 Exceed Robotics TM

We can simplify this expression since we know that 0 + 1 gives you 1.

What do you think the program will do now? It will assign the variable myNumber a value of 1. Let’s
add this to our memory box.

Variable Name Variable Type Variable Value

myNumber int 1

Let’s look at the next line now.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 0 + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 75 | P a g e © 2024 Exceed Robotics TM

We have reached the end of the WHILE loop. Now because this is a WHILE loop, we must go back
and check if our conditional is still True.

Let’s check if our conditional is True or False. Our conditional is checking if the value of the variable
myNumber is less than 3. This is True since the value of myNumber is 1 and 1 is less than 3.

Since the conditional is True. The WHILE loop will perform the actions inside of it. Let’s look at the
first action.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (true){

 straight(25,2);

 myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 76 | P a g e © 2024 Exceed Robotics TM

The first action inside this WHILE loop is a straight command. This would again make the robot go
forward at a speed of 25% for 2 rotations. Let’s move to the next line.

Let’s try and simplify this expression by replacing the variable myNumber on the left-hand side
with its value. This would look something like this.

We can simplify this expression since we know that 1 + 1 gives you 2.

What do you think the program will do now? It will assign the variable myNumber a value of 2. Let’s
add this to our memory box.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 1 + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 2;

 }

}

 77 | P a g e © 2024 Exceed Robotics TM

Variable Name Variable Type Variable Value

myNumber int 2

Let’s look at the next line now. We have reached the end of the WHILE loop. Now because this is a
WHILE loop, we must go back again and check if our conditional is still True.

Let’s check if our conditional is True or False. Our conditional is checking if the value of the variable
myNumber is less than 3. This is True since the value of myNumber is 2 and 2 is less than 3.

Since the conditional is True. The WHILE loop will perform the actions inside of it. Let’s look at the
first action.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (true){

 straight(25,2);

 myNumber = myNumber + 1;

 }

}

 78 | P a g e © 2024 Exceed Robotics TM

The first action inside this WHILE loop is a straight command. This would again make the robot go
forward at a speed of 25% for 2 rotations. Let’s move to the next line.

Let’s try and simplify this expression by replacing the variable myNumber on the left-hand side
with its value. This would look something like this.

We can simplify this expression since we know that 2 + 1 gives you 3.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 2 + 1;

 }

}

 79 | P a g e © 2024 Exceed Robotics TM

What do you think the program will do now? It will assign the variable myNumber a value of 3. Let’s
add this to our memory box.

Variable Name Variable Type Variable Value

myNumber int 3

We have reached the end of the WHILE loop. Now because this is a WHILE loop, we have to go
back and check if our conditional is still True.

Let’s check if our conditional is True or False. Our conditional is checking if the value of the variable
myNumber is less than 3. This is False since the value of myNumber is 3 and 3 is NOT less than 3.

action. Since the conditional is False, the computer exits the WHILE loop. How many rotations in
total did our robot go forward? The robot has gone forward a total of 6 rotations.

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = 3;

 }

}

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 80 | P a g e © 2024 Exceed Robotics TM

task main(){

 int myNumber;

 myNumber = 0;

 while (myNumber < 3){

 straight(25,2);

myNumber = myNumber + 1;

 }

}

 81 | P a g e © 2024 Exceed Robotics TM

IN-CLASS EXERCISES

1. Write a program to have the robot use a counter to drive 4 (linear) laps.
A lap consists of

• Drive Forward 10 rotations
• Turn 180 degrees turn
• Drive Forward 10 rotations
• Turn 180 degrees turn

task main()

{

}

 82 | P a g e © 2024 Exceed Robotics TM

2. Modify the above program to use the EV3 buttons to specify how many laps the robot performs

Button Laps

UP 1

Down 2

Right 3

Left 4

task main()

{

}

 83 | P a g e © 2024 Exceed Robotics TM

 84 | P a g e © 2024 Exceed Robotics TM

HOMEWORK

CODING EXERCISES

1. Write a program that prints all the even numbers between 0 – 100, on the EV3 screen.

task main()

{

}

 85 | P a g e © 2024 Exceed Robotics TM

2. Write a program that make the robot go in a square for a specific number of times.

CHECK YOUR UNDERSTANDING

1. What are the three actions that take place when the robot reaches a line that says the following?

myVal += 1;

2. How many times will the robot go forward in the code below?

task main()

{

}

int myNumber;

myNumber = 90;

while(myNumber < 0)

{

 straight(50, 2);

}

 86 | P a g e © 2024 Exceed Robotics TM

__

3. There are two errors in the code below. Can you spot them?

4. When the code below is run on the robot the robot goes forward forever? What is missing and
where?

int numLaps;

numLaps = 0;

while(numLaps < 5

{

 straight(50, 2);

int numLaps;

numLaps = 0;

while(numLaps < 5)

{

 straight(50, 2);

}

 87 | P a g e © 2024 Exceed Robotics TM

WEEK 6, 7 AND 8 - PROJECT
INTRODUCTION TO THE PROJECT

BACKGROUND

Your robot has been employed by a busy shipping company. This company has several different
trucks that need to be loaded. Your robot’s job will be to aid the workers in their daily work.

TASK 1 – BASIC PROGRAM

The first task for your robot will be to load any of the trucks (selected by the user).

Your program should use the Ev3 buttons to select which truck the robot will load. Once a truck is
loaded the robot should return to where it started.

For example, IF Button 1 is pressed, the crate should be dropped on the middle truck. On the other
hand, IF Button 5 is pressed, the crate should be picked and dropped on the truck on left side.

Additionally, depending on how busy the day will be, the workers need to be able to easily edit the
speed the robot drives. (This means the worker should be able to edit 1 line of code only and affect
the entire program!)

 88 | P a g e © 2024 Exceed Robotics TM

TASK 2 – TIME-SAVER!

To improve the performance of the robot (and save time), the workers would like the program to
continue running once it returns. This should allow the user to easily select another to be load by
simply pushing a new button.

Psst. Think of how can I make some actions repeat forever?

TASK 3 – CRATE COUNTERS

During the busy season, the company ships many packages per day, it is difficult for the workers to
keep track of how many have been shipped.

Expand your program to keep track of how many crates have been loaded, display the current total
on the LCD screen.

	STUDENT NAME:
	Text1:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:

