

Acknowledgements

Copyright © 2021, by Exceed Robotics. All rights reserved. Created and designed in Canada.

Exceed Robotics TM: Microcontroller Handbook, 2nd Edition

y

1
© 2019 Exceed Robotics TM

Except as permitted under the Canada Copyright Act of 1997, no part of this publication may be

reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,

without prior written permission of the publisher.

Designations used by companies to distinguish their products are often claimed as Trademarks. All

brand names and product names used in this book are trade names, service marks, trademarks, or

registered trademarks of their respective owners. The publisher and author or designing team are not

associated with any product or vendor mentioned in this book. This publication is designed to provide

accurate information regarding the subject matter covered.

Arduino is a Trademark of the Arduino Team.

Information contained in this handbook has been obtained from resources believed to be reliable.

However, Exceed Robotics cannot guarantee the accuracy or completeness of any information published

and neither Exceed Robotics nor its contributors to this handbook shall be responsible for any errors,

omissions, or damages arising out of use of this information.

2
© 2019 Exceed Robotics TM

Acknowledgements

Thank you to the following people who spent countless hours and resources to help put this

book together:

• Rob Hattam

• Micheal Em

• Kiran Patel

• Ethan Goldentuler

• Brandon Da Costa

• Kiran Patel

3
© 2019 Exceed Robotics TM

Table of Contents

CHAPTER 1: GETTING STARTED WITH ARDUINO ... 8

1.1 What is an Arduino? 9

1.2 Hardware Pinout 10

1.3 TinkerCad Circuits 12

1.3.1 Creating a TinkerCad Account 12

1.3.2 Create a New Design 13

1.3.3 Learn How to use TinkerCad Circuits 13

1.4 Download Software 15

1.5 Example Code 16

1.6 Exploring the Arduino IDE 17

1.7 Libraries and Troubleshooting 19

1.7.1 Testing the Device 21

1.8 Serial Monitor 22

1.9 What is a Digital Signal? 22

1.10 What is an Analog Signal? 23

1.11 Digital Vs Analog Signal 24

1.12 What is Pulse Width Modulation (PMW)? 25

CHAPTER 2: INTRODUCTION TO BASIC ELECTRIC CIRCUITS ... 26

2.1 What is Electricity? 27

2.1.1 Electricity in a Circuit 27

2.2 How a Circuit Works 28

2.2.1 Circuit Diagrams 28

2.2.2 Circuit Diagram Symbols 29

2.3.1 Using The Multimeter 31

2.3.2 Using The Oscilloscope 33

2.4 Ohms Law 33

2.5 Kirchhoff's Voltage and Current Law 34

Homework Questions: 35

CHAPTER 3: KEY CODING FUNDAMENTALS ... 37

3.1 Data Types 38

file:///C:/Users/SHANT-PC/Desktop/Slide%20Updates/~Arduino%20Handbook/Arduino%20Handbook%20Version%201.3_Brandon%20Da%20Costa.docx%23_Toc100915662

4
© 2019 Exceed Robotics TM

3.1.1 Boolean 38

3.1.2 Char 38

3.1.3 Integers 39

3.1.4 Long 39

3.1.5 Short 39

3.1.6 Float / Double 39

3.1.7 Array 40

3.1.8 Variable Creation 41

3.2 Arduino Code and the IDE 42

3.2.1 Introduction to Code 43

3.3 Arduino Math/Arithmetic 44

3.3.1 Arithmetic Operators 44

3.3.2 Comparison Operators 46

3.3.3 Boolean Operators 49

3.4 Making Decisions in Code 50

3.4.1 If Statements 50

3.4.2 Else Statements 51

3.5 Using While Loops 53

3.6 Using For Loops 56

3.7 Nested Loops 58

3.8 Defining Functions 59

3.9 Mapping Function 62

CHAPTER 4: INTRODUCTION TO ARDUINO BASICS ... 63

4.1 Parts You Will Learn 64

4.1.1 Arduino UNO 64

4.1.2 Arduino MEGA 68

4.1.3 Arduino NANO 70

4.1.4 Breadboard 71

4.1.5 LED (Light-Emitting Diode) 73

4.1.6 RGB LED 76

4.1.7 Jumper Wires 79

4.1.8 Resistors 80

4.1.9 Pull-Down Resistors 81

5
© 2019 Exceed Robotics TM

4.1.10 Pull-Up Resistors 82

4.1.11 Transistors 82

4.1.12 Voltage Divider 84

4.1.13 Buzzers 85

4.2 Buzzer Library 87

4.3 Building Your First LED Circuit 88

4.4 Code Breaker Challenge 89

4.5 Homework Questions 90

CHAPTER 5: WORKING WITH SENSORS .. 100

5.1 Parts You Will Learn 101

5.1.1 Push Button 101

5.1.2 Reed Switch (Magnetic Sensor) 103

5.1.3 PIR Motion Sensor 106

5.1.4 Potentiometer 109

5.1.5 Photoresistor 110

5.1.6 Joystick 113

5.2 Complex Sensors 115

5.2.1 Ultrasonic Sensors 115

5.2.2 Temperature Sensor 117

5.2.3 Flex Sensor 119

5.2.4 Force Sensor 121

5.2.5 Keypad 123

5.2.6 Sound Sensor 125

5.2.7 Gyroscope and Accelerometer (MPU6050) 128

5.2.8 Sensor Shield 131

5.3 Sensor Library 132

5.4 Practice Questions 133

CHAPTER 6: WORKING WITH MOTORS .. 147

6.1 Parts You Will Learn 148

6.1.1 Servo Motor 148

6.1.2 DC Motor 150

6.1.2.1 Controlling DC Motors Method 1: Transistor 151

6.1.2.2 Controlling DC Motors method 2: L293D Chip 153

6
© 2019 Exceed Robotics TM

6.1.2.3 Controlling DC Motors method 3: L298N Driver 155

6.1.2.4 Controlling DC Motors Method 3: Arduino Motor Shield 160

6.1.3 Stepper Motor 163

6.2 Servo Library 166

6.3 Practice Examples 167

6.4 Homework Questions 169

CHAPTER 7: Display Modules .. 174

7.1 LCD Shield 175

7.2 LCD Library 176

7.3 Practice Question 177

7.4 Homework Question 178

7.5 I2C LCD 180

7.6 8X8 Dot Matrix 182

CHAPTER 8: WIRELESS COMMUNICATION .. 188

8.1 HM-10 Bluetooth Module 189

8.2 IR Remote and Receiver 191

8.3 RF Transceiver (NRF2L401): 193

CHAPTER 9: ADDITIONAL ARDUINO HARDWARE ... 203

9.1 Parts You Will Learn 204

9.1.1 DS 1307 RTC Module Pinout 204

9.1.2 RELAY 207

9.2 Practice Examples 208

9.3 Homework Questions 210

CHAPTER 10: HELPFUL BEGINNER TIPS ... 213

10.1 Common Issues and Troubleshooting 214

10.1.1 Problems in Circuits 214

10.2 Problems in Programming 215

10.2.1 Variable 215

10.1.3 Equals, Assignments and Syntax: 215

10.3 Common Errors 218

10.4 Good Programming Techniques 223

CHAPTER 11: ARDUINO RESEARCH SKILLLS ... 225

11.1 Engineering Design Process 226

7
© 2019 Exceed Robotics TM

11.1.1 WHAT ARE THE REQUIREMENTS? 227

11.1.2 HOW CAN IT BE DONE? 227

11.1.3 RESEARCH ON POSSIBLE SOLUTIONS 228

11.1.4 CHOOSING A PROMISING SOLUTION 230

11.1.5 BUILD A PROTOTYPE 230

11.1.6 EVALUATE THE PROTOTYPE 230

11.1.7 REDESIGN AS NEEDED 231

11.2 How Do You Start? 231

11.3 Types of Useful Resources 234

11.3.1 API’s 235

11.3.2 Datasheets 236

11.3.3 Schematics 237

11.3.4 Code Sample 238

CHAPTER 12: ARDUINO CODING REFERENCE .. 239

12.1 Arduino Command Quick Reference 240

12.3 Structures Reference 243

CHAPTER 13: TOOLS, COMPONENTS, AND ADDITIONAL INFORMATION 246

13.1 Starter Kits ... 247

13.1.1 KeyeStudio Starter kit 247

13.1.2 Arduino Starter Kit 248

13.2 Additional Information on the Web 249

13.2.1 The Blog 249

13.2.2 Videos 251

12.2.3 Websites 251

CHAPTER 14: GLOSSARY .. 252

8
© 2019 Exceed Robotics TM

CHAPTER 1: GETTING STARTED WITH

ARDUINO

9
© 2019 Exceed Robotics TM

1.1 What is an Arduino?

An Arduino is an open-source platform used to create electronic projects. When you say

“Arduino,” it can refer to three different things, either a physical piece of hardware, a

programmable environment, or an Integrated Development Environment.

The Arduino is a small microcontroller board with several connection sockets that can be wired

to external parts such as motors, light sensors, LEDs etc. Arduino also refers to the software

development field to program the Arduino Board by writing code for it. The I.D.E (Integrated

Development Environment) refers to the text editing software on the computer that lets you

write code and then upload it to the Arduino board.

The Uno is one of the most

popular boards in the Arduino

family. It is a great choice for

beginners who have just started

learning how to use Arduino.

Figure 1-2. The IDE with code.

An Arduino IDE with code typed

in it. The ten lines of code are

all you need to blink the

onboard LED on your Arduino!

Figure 1-1. An Arduino Uno board.

10
© 2019 Exceed Robotics TM

1.2 Hardware Pinout

Figure 1-3. A diagram of the Arduino Uno R3 pinout. This image will be useful to

you in the future when you are going to make different circuits that require you to

connect different pins to perform a specific action.

Figure 1-4. Arduino Uno Pinout of the power and grounding pins.

11
© 2019 Exceed Robotics TM

Power Jack – The DC Power Jack can be used to power your Arduino board. The power jack

is usually connected to a wall adapter.

VIN Pin - This pin is used to power the Arduino Uno board using an external power source. It

is recommended to be between 5-12 volts.

USB cable - when connected to the computer, provides 5 volts at 500mA.

5v and 3v3 - They provide regulated 5 and 3.3v to power external components.

GND pins - Are all interconnected. The GND pins close the electrical circuit. Always make

sure that all GNDs (of the Arduino and attached components) are connected and have a

common ground.

RESET - Resets the Arduino.

IOREF - The input/output reference. It provides the voltage reference with which the

microcontroller operates.

Pins 0-13 of the Arduino Uno serve as digital input/output pins.

Pin 13 of the Arduino Uno is connected to the built-in

LED.

Digital is a way of representing voltage in 1 bit: either 0 or 1. Digital pins

on the Arduino are pins designed to be an inputs or output based on the

needs of the user. Digital pins are either on or off. When ON they are in a

HIGH voltage state of 5V and when OFF they are in a LOW voltage state

of 0V.

On the Arduino, When the digital pins are configured as output, they are

set to 0 or 5 volts.

When the digital pins are configured as input, the voltage is supplied from

an external device. This voltage can vary between 0-5 volts which is

converted into digital representation (0 or 1). To determine this, there are

2 thresholds:

Below 0.8v - considered as 0.

Above 2v - considered as 1.

Figure 1-5. An Arduino Uno’s Digital Pins.

12
© 2019 Exceed Robotics TM

All the inputs and Outputs use standard jumper sockets connected to the microcontroller.

Therefore, you can plug components straight in and see results immediately!

1.3 TinkerCad Circuits

1.3.1 Creating a TinkerCad Account

The Arduino Uno has 6 analog pins, which utilize

ADC (Analog to Digital converter). These pins

serve as analog inputs but can also function as

digital inputs or digital outputs. Arduino Pins A0-A5

can read analog voltages.

ADC stands for Analog to Digital Converter.

ADC is an electronic circuit used to convert analog

signals into digital signals in which the micro-

processor can understand and use it through its

operation.

Figure 1-6. An Arduino Uno’s Analog Pins

Now that you know what an Arduino is and different pinouts that the Arduino board can have,
you can now make a virtual circuit using the Arduino board! The website that will help you
with this task is TinkerCad. Follow the steps below to create a TinkerCad account:

1) Go to https://www.tinkercad.com/#/
2) Click “Join Now”

3) Enter the requested information for registration.
4) Click “Create Account”

Helpful

Steps

to follow!

13
© 2019 Exceed Robotics TM

1.3.2 Create a New Design

1.3.3 Learn How to use TinkerCad Circuits

2. And then click “Create new Circuit”

1. Go to “Circuits”

TinkerCAD allows you to make

3D designs. You don’t need to

know how them for Arduino;

however, being able to create

3D designs is a useful skill to

have!

Figure 1-8. Inside the TinkerCad home menu for circuits.

To begin learning how to create

circuits, click on the “learn” tab in

the top navigation bar.

14
© 2019 Exceed Robotics TM

1) Click on the navigation drop down

menu to switch from “3D” to “Circuits””.

4) Once you’ve completed all the lessons in

the “Starters” Section, click on the

“Lessons” and “Projects” tab to move on to

more complex, and in-depth lessons.

2) Select

“Circuits”

from here.

1. 2. 3. 4.

3) Select the first lesson “Start Simulating” and
then make your way through all the lessons for
the beginner’s introduction in using TinkerCad.

Figure 1-10. The Tinker Cad Learn menu. You can find the lessons by clicking on the

Circuits tab then completing all “Starters”, “Lessons” and “Projects” examples provided.

Simply follow the instructions

given in the left-hand window

and click “next” when you

complete each step.

Figure 1-11. The TinkerCad Lessons for circuits. You can simply click the

next button and follow the instructions given to complete each lesson.

15
© 2019 Exceed Robotics TM

1.4 Download Software

A software application that is used to write computer code in a coding language is called the

Integrated Development Environment (IDE). Follow the steps below for your respected

computer to download the Arduino IDE.

Simply follow the instructions given in

the left-hand window and click next

when you complete each step.

Figure 1-12. Another example of the TinkerCad Lessons for circuits. You can simply

click the next button and follow the instructions given to complete each lesson.

Open the Arduino download page at http://arduino.cc/en/Main/Software.

Select the download file for the operating system you are using from the list of current

Arduino downloads. As of making this handbook, the current version of the Arduino IDE

is 1.8.9.

After you have installed the software, plug one end of your USB cable into your Arduino

board and the other end into your computer, to ensure the program is running correctly.

16
© 2019 Exceed Robotics TM

If you need more information or you still have questions, you can visit the link below:

If you have any problems for Mac downloads, visit

http://arduino.cc/en/Guide/MacOSX for more help.

To see a video about how to install the Arduino IDE on a computer running Mac OS X,

visit the companion site at www.wiley.com/go/adventuresinarduino.

If you experience any problems for Windows OS download, visit:

http://arduino.cc/en/Guide/Windows

If your computer runs Linux, you should first visit the online documentation for Linux

and Arduino at http://playground.aruino.cc/Learning/Linux

.

1.5 Example Code

Click Here to Download all code examples https://exceedrobotics.com/wp-

content/uploads/2022/01/Arduino-Handbook-Code.zip

Helpful

Steps

to follow!

http://arduino.cc/en/Guide/MacOSX
http://www.wiley.com/go/adventuresinarduino
http://arduino.cc/en/Guide/Windows
http://playground.aruino.cc/Learning/Linux
https://exceedrobotics.com/wp-content/uploads/2022/01/Arduino-Handbook-Code.zip
https://exceedrobotics.com/wp-content/uploads/2022/01/Arduino-Handbook-Code.zip

17
© 2019 Exceed Robotics TM

1.6 Exploring the Arduino IDE

Figure 1-14. The Arduino IDE Labelled.

Figure 1-15. Important Buttons in the Arduino IDE.

18
© 2019 Exceed Robotics TM

The “Check Mark” is the Verify button. When you click this button, the Arduino complies the

code; in other words, it takes the code written and turns it into instructions the Arduino Board

can understand. This process is called “Compiling.” If there are parts of the code the

Arduino’s compiler does not understand (e.g. missing semicolon or typo in code) it prints an

error message at the bottom of the IDE window.

The button that looks like an “Arrow to the Right” is an Upload button. The Upload button

complies the code and uploads it onto the Arduino UNO through a USB. The shortcut key for

verifying is Ctrl + R, and key for uploading is Ctrl + U.

The button that looks like a “File Icon” is the New file button. By clicking this button, you will

immediately open a new file.

The button that looks like an “Arrow Up” icon is the Open button. The open button allows you

to open previous files.

The button that looks like an “Arrow Down” icon is the Save button. This button allows you to

save the code so that you won’t lose all your progress.

Note: Arduino boards only holds one program, called a sketch at a time. Therefore, each time

you upload a sketch, the Arduino loses the old sketch and only runs the new one.

Figure 1-16. Selecting your Arduino Board

 Open the IDE, go to the menu bar: Tools > Board, then select the Arduino Board type
you are using.

19
© 2019 Exceed Robotics TM

1.7 Libraries and Troubleshooting

When something goes wrong when you’re trying to upload code to an Arduino board, a message

called “avrdude” might be printed at the bottom of the Arduino IDE. Usually, it’s that the computer

Figure 1-17. Selecting the port.

2) Go to menu: Tools > Port and select the port available:

Windows is usually: “COM” port
Mac is usually: “/dev/tty.usbmodem”

Linux: usually: “/dev/ttyACMO”

3) Once that is done, you are ready to send code written in the IDE to the Arduino. Any
orange error messages from the IDE may indicate some errors such as your board not
being connected properly, selecting the wrong board, or software drivers needing to be
installed.

Note: When you are uploading, the RX and TX lights should blink on the Arduino, and the
code should start running. If not, you may have to do some troubleshooting to fix the
problem.

 Helpful

Steps

to follow!

Figure 1-18. A Common Error Message to the Arduino IDE.

20
© 2019 Exceed Robotics TM

is trying to use avrdude to send a new sketch to the Arduino Uno, but the computer can’t find it.

The problem could be caused by selecting the wrong port.

Arduino Command Quick Reference Table

Command Description

setup()
A function that runs once when the Arduino first starts. See also

http://arduino.cc/en/Reference/Setup.

loop()
A function that is repeatedly run after the setup() is completed and until the

Arduino is turned off. See also http://arduino.cc/en/Reference/Loop.

pinMode()
Sets the PIN entered as the argument to either output electricity. See also

http://arduino.cc/en/Reference/PinMode.

OUTPUT
Keyword set in the second argument of pinMode() that says the pin will

output electricity. See also http://arduino.cc/en/Referenve/Constants.

digitalWrite()
Turns on or off the electricity at the specified pin. See also

http://arduino.cc/en/Reference/DigitalWrite.

analogWrite()

Controls the exact amount of electricity flowing out of a specified pin

https://www.arduino.cc/reference/en/language/functions/analog-

io/analogwrite/

digitalRead()

detects if power is flowing in to a specified pin

https://www.arduino.cc/reference/en/language/functions/digital-

io/digitalread/

analogRead()

detects how much power is flowing into a specified pin

https://www.arduino.cc/reference/en/language/functions/analog-

io/analogread/

HIGH
Keyword used to turn on the electricity in digitalWrite(). See also

http://arduino.cc/en/Reference/Constants.

LOW
Keyword used to turn on the electricity in digitalWrite(). See also

http://arduino.cc/en/Reference/Constants.

delay()
Pauses the Arduino Uno for a specified number of milliseconds. See also

http://arduino.cc/en/Reference/Delay.

tone()
generates a frequency in a specified pin

https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/

noTone()

ends the use of a frequency in a specified pin

https://www.arduino.cc/reference/en/language/functions/advanced-

io/notone/

map()
converts the ranges of inputted values to a controlled ratio

https://www.arduino.cc/reference/en/language/functions/math/map/

http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Reference/Loop
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Referenve/Constants
http://arduino.cc/en/Reference/DigitalWrite
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Delay
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
https://www.arduino.cc/reference/en/language/functions/advanced-io/notone/
https://www.arduino.cc/reference/en/language/functions/math/map/

21
© 2019 Exceed Robotics TM

1.7.1 Testing the Device

Find the Arduino application

on your desktop

Double click to open

Open the Arduino Software

you will see the IDE on the

right

Connect the USB to the

computer

Click on tools

Click on port and select the

Arduino port

Click on the Board and Select

Uno

Write your sketch

Press the Compile button (to

check for errors)

Press the Upload button to

program Arduino board with

your design

Figure 1-19. The Arduino IDE
Helpful

Steps

to follow!

Selecting the Arduino port and

finding the Arduino device is

important to properly upload code

onto the board and to ensure the

correct drivers and ports are

working.

22
© 2019 Exceed Robotics TM

1.8 Serial Monitor
The Serial Monitor is a “tether” between the computer and your Arduino. It has a separate pop-

up window that acts as a different terminal that communicates by receiving and sending Serial

Data. The Serial Monitor is handy when you have a continuous output of information from

sensors, and you want to see them on a computer instead of the LCD. Serial Data is sent over

a single wire (but usually travels over USB in our case) and consists of a series of 1's and 0's.

Data can be sent in both directions (In our case on two wires).

How to set-up Serial Monitor

1) In the set-up, you need to begin the Serial Monitor

void setup ()

{

 Serial.begin(9600);

}

2) In the main loop, you need to print the info to the Serial Monitor

void loop ()

{

 Serial.println(“Hello”)

}

3) In tools, select Serial Monitor.

Now you can use the Serial Monitor. The Serial Monitor will help you with learning Arduino by

letting you observe outputs to the different types of code you will write for your Arduino circuit.

1.9 What is a Digital Signal?

Digital signals are values that have a definite state. In the case for Arduino digital pins, they

can only have two states “LOW” or “HIGH”, “ON” or “OFF”. (“0” or “5v” which makes “0” /”1”).

Figure 1-20. Inside Arduino.

23
© 2019 Exceed Robotics TM

Digital Input Examples:

● ON/OFF Switch

● Black and white colour sensor

Digital Outputs allow a microcontroller to output 2 logic states. Like ON/OFF.

1.10 What is an Analog Signal?

Analogs signals are values that can have a range of many states.

There are many grey shades between white and black. We could not explain the colour “grey”

using black or white or using 2 definitive values “0” / “1.”

In this example; we need a big range of numbers, let’s say the range of 0 -10 to represent white

as well as all grays with different brightness and Black.

Let us assume we only have the colours black and white

with no grey shade in between. This would be a Digital

Signal where black is a 0 and white is a 1 with no other

numbers in between.

Digital signals can only be one

of 2 states ON/OFF in the case

for the shades, only Black or

White and nothing in between.

Figure 1-21. A colour-based

example of digital signals.

Figure 1-22. A colour-based example of analog signals. Analog signals can be a range of

states. In the case for the shades example above, the analog signals include Black or

White, and the different shades of grey in between.

24
© 2019 Exceed Robotics TM

1.11 Digital Vs Analog Signal
Once more we need to look at this gray scale for reference. digital signals can only be high or

low or black and white but analog lets you access the many shades of gray, this adds versatility

that can be both useful but also adds unnecessary work.

Here we see a few of the devices that the Arduino is used with. We see certain devices fall under

digital or analog signals for very specific reasons. digital outputs do not need direct voltage

control, they only need a constant high voltage signal to function, just as those under analog

input need specific voltage signals to produce different results. but that doesn't mean these

devices are exclusive to analog or digital signals. a motor would run on a digital signal, it would

just always run at full speed. just as a light bulb could be controlled with an analog signal as the

light would be as dim or bright as the signal allowed.

25
© 2019 Exceed Robotics TM

1.12 What is Pulse Width Modulation (PMW)?

Pulse Width Modulation, or PMW is a technique for getting analog results with digital means.

Digital control is used to create a square wave, a signal switched between on and off. This on-

off pattern can simulate voltages in between full “on” (5 Volts) and “off” (0 Volts) by changing

the portion of the time the signal is spent “on” versus the time that the signal spent “off”. The

duration of "on time" is called the pulse width. To get varying analog values, you change, or

modulate, that pulse width. If you repeat this on-off pattern fast enough with an LED for

example, the result is as if the signal is a steady voltage between 0 and 5v controlling the

brightness of the LED.

The green lines represent a regular time-

period. This duration or period is the

inverse of the PWM frequency. In other

words, with Arduino's PWM frequency at

about 500Hz, the green lines would

measure 2 milliseconds each.

A call to analogWrite() is on a scale of

0 - 255, such that analogWrite(255)

requests a 100% duty cycle (always on),

and analogWrite(127) is a 50% duty

cycle (on half the time).

26
© 2019 Exceed Robotics TM

CHAPTER 2: INTRODUCTION TO BASIC

ELECTRIC CIRCUITS

27
© 2019 Exceed Robotics TM

2.1 What is Electricity?

Electricity is the flow of electrons. Atoms are made up of electrons which surround protons and

neutrons. The electrons can “jump” from atom to atom. When a lot of electrons “jump,” a flow is

created, like water droplets in a river. If you observe 2.1.1, then you will see the visual

representation of electricity and the flow of electricity in atoms.

2.1.1 Electricity in a Circuit

Electrons or electricity flows when the

negative and positive sides are connected to a

working circuit. Batteries are usually made of

some acid, either in liquid or solid form.

Therefore, converting chemical energy into

electrical energy by a chemical reaction.

Figure 2-1. Electricity Flow in Circuits.

In a circuit, electrons flow from an area of

“more electrons” (the negative terminal of

the battery) to an area of “fewer electrons”

(the positive end of the battery).

Figure 2-2. Electricity Flows out from the
negative terminal to the positive terminal

when connected to a circuit.

If we connect components together using

wires and have a power source (battery),

we can create a working circuit or a flow of

electron (a current) through the circuit to

power a device (e.g. lightbulb).

28
© 2019 Exceed Robotics TM

2.2 How a Circuit Works

During a project while working with circuits, instead of drawing the various electronic

components, we use symbols to represent them in a circuit diagram.

2.2.1 Circuit Diagrams

Circuit diagrams show the connections with wires drawn as neat straight lines. The actual

layout of the components is different from the circuit diagram and this can be confusing for

beginners. It is better to concentrate on the connections, of the components and not the actual

positions of them in the diagram.

Figure 2-3. A simple circuit.

A circuit diagram shows how

components are connected in

a circuit. Each component /

device is represented by a

symbol. (Can be seen in

2.2.2).

Figure 2-4. A circuit diagram uses symbols to draw a circuit

rather than drawing all the physical components.

the circuit must always be

“CLOSED.” Otherwise,

there will be no flow of

electrons.

Figure 2-5. A circuit diagram can be opened or closed. A circuit must

be closed (wires are connected no gap) for the current to flow

through and power the circuit.

29
© 2019 Exceed Robotics TM

Drawing circuit diagrams is not difficult. This is a useful skill for science and when working

with electronics. You will need to draw circuit diagrams if you design your own circuits.

The following steps and tips will help in drawing:

2.2.2 Circuit Diagram Symbols

Shown below are a few of the many symbols used in making circuit diagrams. These are the

most common ones you will come across while working with Arduino.

Use the correct symbol for each component.

Draw wires using a ruler to have straight lines.

Put dots () at junctions.

Label components such as resistors, capacitors, LEDs
etc. with their values.

The positive (+) supply should be pointed up and the
negative (-) supply pointed down.

Figure 2-6. Good and bad

form of drawing a circuit

diagram.

Helpful

Steps

to follow!

Voltmeter

Ammeter

Galvanometer

Ohmmeter

Figure 2-7. Circuit diagram symbols and what each symbol represents. These

symbols are a good reference for future use in designing your own circuits.

30
© 2019 Exceed Robotics TM

2.3 Current and Voltage

Current is the rate of flow of electrons. Higher current means “more electrons” are flowing

through the circuit at a given time. Current is measured in Amps (A) using an Ammeter.

Voltage is the electrical force that drives an electric current between two points.

 Current Voltage

Symbol I V

Definition

Current is the rate at which

electric charge flows past a

point in a circuit. In other

words, current is the rate of

flow of electrons

Voltage is the potential

difference between two

points in a circuit. In other

words, voltage is the "energy

per unit charge”.

Unit (A), amps, amperage (V), volts, voltage

Relationship Current cannot flow without

Voltage.

Voltage can exist without

current.

Measuring Instrument Ammeter Voltmeter

SI Unit 1 ampere = 1

coulomb/second. (I = V/R)

1 volt = 1 joule/coulomb.

(V=W/C)

In series circuits
Current is the same through

all components connected in

series.

Voltage gets distributed over

components connected in

series.

In parallel circuits
Current gets distributed over

components connected in

parallel.

Voltages are the same

across all components

connected in parallel.

Figure 2-8. A higher voltage will result in more current.

31
© 2019 Exceed Robotics TM

2.3.1 Using The Multimeter
We can measure the Voltage, current, or resistance in a circuit using a multimeter. To make circuit

measurements we need to make sure the multimeter is the correct mode. To do this, turn the dial to

the desired setting and connect the meter to the circuit you want to measure.

Measuring Resistance:

32
© 2019 Exceed Robotics TM

Measuring Voltage:

Measuring Current:

33
© 2019 Exceed Robotics TM

2.3.2 Using The Oscilloscope
The main purpose of an oscilloscope is to graph an electrical signal as it varies over time. Most scoped

produce a two-dimensional graph with time (s) on the x-axis and Voltage (V) on the y-axis.

2.4 Ohms Law
Ohms is the unit that is used to measure electrical resistance, resistance is represented by the

symbol Ω. The electrical resistance determines how difficult it is for electrons to flow through a

given material. Ohm's law is the rules that govern the relationship between Voltage, Current

and Resistance. We can determine an equation from this law that is used to determine the

amount of any three of these units within an electrical component given two of the three

values.

34
© 2019 Exceed Robotics TM

2.5 Kirchhoff's Voltage and Current Law

Voltage Drop is the loss in potential energy by a given component, if there is only one device

in a circuit then the voltage drop across the device would be equal to the voltage source.

Kirchhoff’s Voltage Law (KVL) says that if we add the voltage drop across all components in

a loop within a circuit, they will add up to the voltage source. We may use this law to calculate

the voltage drop across a resistor.

Kirchhoff’s Current Law says that the number of electrons entering any point in a circuit must

be equal to the number leaving that point. This means that if we count the number of electrons

entering and those exiting, the value will be the same. this law lets us see how much current is

flowing through a path given the current of the other paths

35
© 2019 Exceed Robotics TM

Homework Questions:

1.What is current:
a. The push behind the electrons
b. The measure of how hard it is for electrons to flow
c. Total number of electrons that are flowing

2. What would happen to the amount of current if the resistance increase? (refer to picture
below):

a. Current decrease
b. Voltage decrease
c. Current increase

3. What is Voltage?

a. It is a measure of energy stored in a system
b. The energy between two points
c. It is a measure of the potential energy each electron has

4. In which of these circuits can voltage be measured?
a. A battery connected to a motor
b. A microcontroller connected to a lamp
c. An LED connected to a resistor

5. The voltage across the lamp is …….?
a. 6V
b. 7V
c. 9V

36
© 2019 Exceed Robotics TM

6. Which of these voltages can be considered as 1 (5V) for the digital input of Arduino?
a. 2.6V
b. 2.4V
c. 2V

7. Push button is an example of an input device
a. True
b. False

8. Which of these is an incorrect pin:
a. An output pin connected to an LED
b. An input pin connected to a push button
c. An input pin connected to a pullup resistor and a push button

37
© 2019 Exceed Robotics TM

CHAPTER 3: KEY CODING FUNDAMENTALS

38
© 2019 Exceed Robotics TM

3.1 Data Types

Data types, in programming is a classification that specifies the type of value a variable has and

what type of mathematical, relation or logical operations can be applied to it without causing an

error. Every piece of information has its own data. They type of a variable determines how much

space it occupies in the storage and how the value of the variable is interpreted.

Byte – A byte stores an 8-bit value from, 0 to 255.

3.1.1 Boolean

A Boolean holds one of two values, true or false. This can be represented in the “C” coding

language by using the word ‘true’ or ‘false’ but it can also be described as a 1 or 0.

This can be interpreted as a light or a switch. One representing when the switch is pressed, or

the light is on, giving a result of True or 1. 0 representing when the switch is open, or the light is

off, giving a result of false. Each boolean variable occupies one byte of memory.

Boolean Value Example

boolean val = false; // declaring a Boolean type value with false

boolean val = true; // declaring a Boolean type value with true

3.1.2 Char

A Char Data type holds a single character value and takes up one byte of memory.

Characters are written in single quotes like this: ‘K’. Characters are stored as numbers. The

specific values for each character can be seen in the ASCII Chart. This makes it possible to do

arithmetic operations on characters. For example, ‘K’ + 1 has a value of 76 because the ASCII

value of the capital letter K is 75.

Char Value Example

Char val = ‘b’; // declaring a char type value initialized with character a

Char val = 99; // declaring a char type value initialized with character 97

39
© 2019 Exceed Robotics TM

3.1.3 Integers

Integers called “int” in code are the primary data type for number storage. They are any

whole number and can be positive, negative or zero. On the Arduino Uno an int stores a 16-bit

(2-byte) value. This yields a range of -32,768 to 32,767 number values that int can store.

Int Value Example

Int num = 99; // declaration of type int variable and initialized with 99

3.1.4 Long

Long variables are large size variable data types for number storage, and stores 32 bits (4

bytes), range from -2,147,483,648 to 2,147,483,647.

Long Value Example

Long acceleration = 2145678910 ;

//declaration type Long variable initialized with 2145678910

3.1.5 Short

Short variables are a 16-bit data type. A short can store up to 16-bit value (2-byte). This yields

a range of -32,768 to 32,767.

Short Value Example

Short num = 13 ; //declaration of type short variable initialized with 13

3.1.6 Float / Double

Floating-point numbers, are numbers that have a decimal point.

Floating-point numbers are often used to approximate analog and continuous values because

they have greater accuracy than integers. Floating-point numbers can be as large as

40
© 2019 Exceed Robotics TM

3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of

information.

Floats have only 6-7 decimal digits of precision. That means the total number of digits, not the

number to the right of the decimal point. Unlike other platforms, where you can get more

precision by using a double (e.g. up to 15 digits), on Arduino, double is the same size as float.

Floating point numbers are not exact and may yield strange results when compared. For

example 6.0 / 2.0 may not equal 3.0. You should instead check that the absolute value of the

difference between the numbers is less than some small number.

Float/Double Value Example

float num = 2.71828; //declaration of variable with type float and initialize

it with 2.71828

double num = 3.1415

3.1.7 Array

An array is list of variables that are accessed with an index number. Arrays help you to format

the code as well as, access a certain variable inside of a list. Think of an array as a pouch of

variables or data (float, integer, long), which help you to organize the data. When you need

something, you get the certain data inside this pouch, allowing it to be accessed how you want.

Arrays start counting from 0, therefore in an array of 10, they don’t end at 10 but at 9. For

example; int myArray[10] = {9, 5, 6, 6, 7, 7, 2, 4, 1, 3}; contains 10 integers, however the last

integer will end at 9 because arrays start counting from 0.

For Example:
● myArray[0] contains 9
● myArray[1] contains 5
● myArray[2] contains 6
● myArray[9] containing 3

41
© 2019 Exceed Robotics TM

3.1.8 Variable Creation

To create a variable, we need to include three pieces of information related to its use:

1. Declare and initialize the number 9 to an int value with the variable name ‘num’.

1) Specify the type of information that you intend to store. 9 is an integer, so you need to write

int before your variable name.

2) You need to assign a variable name that usually stores the information. The name “num” is

given to us. For future reference variable names should represent what the value is storing

to follow proper coding standards.

3) We need to include a value that will be stored inside of the variable, in this case this would

be a 9. Combine everything together, we will have

Answer: int num = 9;

2. Declare and initialize a variable to store value of 3.14.

1) Assign a data type to the variable that we are going to create. Our data type contains

decimals so in this case we need to use a float data type.

We must specify the type of information that we intend to store (the data type).

We must assign our variable a name, usually one that references its purpose or the

information it stores. Rules of Variable naming must be followed

(must start name with letters, no spaces, must be unique so their can't be

duplication, is case sensitive, can't use arduino function names)

We have the option of initializing the variable by including a value to be stored.

However, we can also leave this out and assign or change the stored value later. The

value put into the variable stored must be consistent with the data type we selected.

Practice Examples
Helpful Steps

to follow!

42
© 2019 Exceed Robotics TM

2) Next we need to name our variable that is easily recognizable. In this case we can name our

variable pi, because the variable is 3.14 which is the first few numbers of Pi.

3) Finally, we need to include a value that will be stored inside of the variable which is 3.14.

Answer: float pi = 3.14;

3.2 Arduino Code and the IDE

This section introduces the concept of coding and the language used while coding. These are

the Key coding Fundamentals to begin writing your own code for Arduino to create the

software to run your own projects.

 2)

1)

3)

4)

5)

Figure 3-1. Arduino IDE with code.

“setup()” Function – Any code written in this function runs once when the
Arduino is turned on and running.

Comments – Regular text added throughout the code for helping people
understand the code written and what each part of the code does.

“loop()” Function – Any code written in this function is run over and over again
as long as the Arduino is on, and the code must be written in void loop for the
Arduino to run the code and perform it.

“;” semicolons: It is proper syntax and coding rules that every line of code not
starting/ending with a curly brace or a comment must end with a semicolon at the
end

Calling a Function – Commands the Arduino to do something (in this case calls

43
© 2019 Exceed Robotics TM

3.2.1 Introduction to Code
Arduino uses the “C” programming language. All the code written for an Arduino program is

simply a list of instructions in this C language that tells the Arduino to do something. Writing

code must follow a specific syntax to make the code follow standards in programming.

Every Arduino sketch must have the setup & loop functions. The setup function is triggered

only when the Arduino starts up and runs just that once. The loop function continuously runs

the code types in it endlessly.

Syntax: the set of rules, principles, and processes that govern the structure of a given

language, in this case, the structure of the “C” programming language

Sketch: The text/code of written for the Arduino. The IDE is used to write, save, edit, and load

sketches.

Function: Computer instructions that perform an action or respond to triggers. a group of

statements that together perform a task

Setup: The first function in most Arduino sketches. This code runs before anything else and is

only run once when the Arduino powers up

Loop: The most important function. Required for any sketch, where the Arduino does all the

work. Looping the same code continuously to perform the code you wrote for it.

Variable: Simply names used to refer to some location in memory – a location that holds a

value the code is working with. It may help to think of a variable as a placeholder for a value. It

represents a value such as a number or letter that can change.

Variables do not require, but should follow a proper naming convention when they are more

than one word:

Spaces are not allowed in file, variable and function names. The 2 naming conventions that

allow multi-word names are:

camelCase: first letter lowercase, but

allOtherLettersAfterStartsWithAnUppercase

all_lowercase: use_an_underscore_with_no_capital_letter_after_each_word

44
© 2019 Exceed Robotics TM

3.3 Arduino Math/Arithmetic

3.3.1 Arithmetic Operators

% (remainder)

Remainder operations calculate the remainder when one integer is divided by

another. The % (percent) symbol is used to carry out remainder operations.

Syntax: remainder = dividend % divisor;

Example

int x = 0;

x = 7 % 5; // x now contains 2
x = 9 % 5; // x now contains 4
x = 5 % 5; // x now contains 0
x = 4 % 5; // x now contains 4
x = -4 % 5; // x now contains -4
x = 4 % -5; // x now contains 4

* (multiplication)

The Multiplication operator * (asterisk) operates on two operands to produce the product.

Syntax: product = operand1 * operand2;

Example

int a = 3;
int b = 12;
int c = 0;
c = a * b;

// the variable 'c' gets a value of 36 after this statement is executed

+ (addition)

The Addition operator + (plus) operates on two numbers to produce the sum.

Syntax: sum = operand1 + operand2;

https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/remainder/
https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/multiplication/
https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/addition/

45
© 2019 Exceed Robotics TM

Example

int a = 7;
int b = 8;
int c = 0;
c = a + b;

// the variable 'c' gets a value of 15 after this statement is executed

- (subtraction)

The Subtraction operator - (minus) operates on two numbers to produce the difference of the
second number from the first number.

Syntax: difference = operand1 - operand2;

Example

int a = 5;
int b = 10;
int c = 0;
c = a - b;

// the variable 'c' gets a value of -5 after this statement is executed

/ (division)

The Division operator / (slash) operates on two numbers to break a number up into an equal
number of parts and produce the result.

Example

int a = 50;
int b = 10;
int c = 0;
c = a / b;

// the variable 'c' gets a value of 5 after this statement is executed

Syntax: result = numerator / denominator;

https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/subtraction/
https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/division/

46
© 2019 Exceed Robotics TM

= (assignment operator)

The equal sign (=) is called the assignment operator. The assignment operator tells the
Arduino board to evaluate whatever value or expression is on the right side of the equal sign
and store it in the variable to the left of the equal sign.

Example

int analogVal; // declare an integer variable named sensVal

analogVal = analogRead(0);
// store the (digitized) input voltage at analog pin 0 in SensVal

3.3.2 Comparison Operators

!= (not equal to)

The (!=) not equal to sign compares the variable on the left with the value or variable on the
right of the operator. Returns true when the two operands are not equal.

Syntax: x != y; // is false if x is equal to y and it is true if x is not equal to y

Example

// if x is not true
if (!x)
{
 // statements
}

< (less than)

Compares the variable on the left with the value or variable on the right of the operator.
Returns true when the operand on the left is less (smaller) than the operand on the right.

Syntax: a < b;

https://www.arduino.cc/reference/en/language/structure/arithmetic-operators/assignment/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/notequalto/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/lessthan/

47
© 2019 Exceed Robotics TM

Example

if (x < y)
{
 // tests if x is less (smaller) than y
 // do something only if the comparison
 //result is true
}

<= (less than or equal to)

Compares the variable on the left with the value or variable on the right of the operator.
Returns true when the operand on the left is less (smaller) than or equal to the operand on the
right.

// is true if x is smaller than or equal to y and it is false if x is greater than y
Syntax: x ⇐ y;

Example

if (x <= y)
{
 // tests if x is less (smaller) than or equal to y
 // do something only if the comparison result is true
}

== (equal to)

Compares the variable on the left with the value or variable on the right of the operator.
Returns true when the two operands are equal.

Syntax x == y; // is true if x is equal to y and it is false if x is not equal to y

Example

if (x == y)
{
 // tests if x is equal to y
 // do something only if the comparison result is true
}

https://www.arduino.cc/reference/en/language/structure/comparison-operators/lessthanorequalto/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/equalto/

48
© 2019 Exceed Robotics TM

> (greater than)

Compares the variable on the left with the value or variable on the right of the operator.
Returns true when the operand on the left is greater (bigger) than the operand on the right.

Syntax: x > y; // is true if x is bigger than y and it is false if x is equal or smaller than y

Example

if (x > y)
{
 // tests if x is greater (bigger) than y
 // do something only if the comparison result is true
}

>= (greater than or equal to)

Compares the variable on the left with the value or variable on the right of the operator.
Returns true when the operand on the left is greater (bigger) than or equal to the operand on
the right.

Syntax: x >= y; // is true if x is bigger than or equal to y and is false if x is smaller than y

Example

if (x >= y)
{
 // tests if x is greater (bigger) than or equal to y
 // do something only if the comparison result is true
}

https://www.arduino.cc/reference/en/language/structure/comparison-operators/greaterthan/
https://www.arduino.cc/reference/en/language/structure/comparison-operators/greaterthanorequalto/

49
© 2019 Exceed Robotics TM

3.3.3 Boolean Operators

! (logical not)

Logical NOT results in a true if the operand is false and vice versa.

Example

if (!x)
{
 // if x is not true
 // statements
}

It can also be used to invert the boolean value.
 x = !y; // the inverted value of y is stored in x

&& (logical and)

Logical AND results in true only if both operands are true.

Example

if (digitalRead(2) == HIGH && digitalRead(3) == HIGH)
{
 // if BOTH the switches read HIGH
 // statements
}

https://www.arduino.cc/reference/en/language/structure/boolean-operators/logicalnot/
https://www.arduino.cc/reference/en/language/structure/boolean-operators/logicaland/

50
© 2019 Exceed Robotics TM

|| (logical or)

Logical OR results in a true if either of the two operands is true.

Example

if (x > 0 || y > 0)
{
 // if either x or y is greater than zero
 // statements
}

3.4 Making Decisions in Code

3.4.1 If Statements

An if statement is a logic command that allows you to direct the flow of your program. Using a

conditional statement that can be answered as either a true or false can lead to your program to

either execute or skip over a block of code.

This can be interpreted logically as an if/then statement. For example, you’re given the condition:

if you eat your dinner, then you get dessert. In this example, you only get to have dessert if you

ate your dinner. Otherwise, dessert is skipped or ignored.

If Statement Example

If (distance < 10)

{

 stopAllMotors();

}

In general, an if statement will have the following form:

We can read this as: if the distance is less than

10, then stop all the motors. This could have been

part of the program for a rover type robot where it

is autonomously driving. Given some mechanism

for measuring distance from objects, we could

use something like this to prevent collisions.

if (condition) {

statement

}

https://www.arduino.cc/reference/en/language/structure/boolean-operators/logicalor/

51
© 2019 Exceed Robotics TM

3.4.2 Else Statements

Else/Else-If statements: We can expand on the “if” structure to include multiple blocks of

code to be considered. By adding either an ‘else’ or “else if” clause, we can add more complex

flow control to our programs than a basic ‘if’ statement. If either one or more ‘else if’ clauses

are added, they are evaluated in order from top to bottom, starting with the initial if statement

condition.

When checking the clauses, the first one to be found true is the one that will be selected, and

its containing block executed, all subsequent blocks will be ignored, regardless of whether their

conditional statement would have been found true.

Finally, an ‘else’ clause can be attached. In this case, the code contained within the ‘else’

clause will always be executed if none of the preceding conditions are met.

Example Code

if (temperature >= 20)

{

 Serial.print(“It is hot outside”);

}

else if (temperature >= 10)

{

 // 10 <= temperature < 20

 Serial.print(“It is nice outside, may need a sweater!”);

}

else

{

 // temperature < 10

 Serial.print(“It is cold outside, grab a jacket!”);

}

52
© 2019 Exceed Robotics TM

In general, an if statement with multiple clauses will have the following form:

The above code may be used for a temperature sensor. If it reads a temperature above

or equal to 20°C, it will print “It is hot outside”. However, if the temperature is not above

20°C it will move to the next statement, which checks to see if it is above 10°C. This

"else if" creates a range to check if the temp is between 10°C and 20°C because in the

initial if statement, it has determined the temp to be less than 20°C. Finally, if both

conditions return a false, then it is determined the temperature is below 10°C because

the first 2 conditions determined the temperature to not be above 20°C or 10°C and the

statement in the else part of the code will print.

Note: An if…else if statement can have an unlimited amount of “else if” conditions but

must end with an “else” condition or else the code will not run properly.

if (condition)

{

 statement

}

else if (condition)

{

 statement

}

else

{

 statement

}

53
© 2019 Exceed Robotics TM

3.5 Using While Loops

While Loop: While loop in programming repeatedly executes a target statement inside the

brackets if a given condition is true, until the condition becomes false. The false condition can

come from your code, such as an incremented variable or a Boolean value, or an external

condition, such as from a sensor.

In general, while loop will have the following form:

Figure 3-2. While loop flow chart.

while (condition)

{

 statement

}

54
© 2019 Exceed Robotics TM

Simple While Statement Example

int count = 0

while (count < 10)

{

 rotateMotors()

 count += 1

}

Break: If you use break at the end of your condition; function will reach to the end of the loop.

Example of using a break

while (a < 10)
{
 if (a == 9)
 {
 break;
 }
 analogWrite(12, a);
}

Continue: Continue function will skip one loop of the whole, doesn’t reach the end of the loop

unless it worked when it was right before the end.

Example of using Continue

for (int count = 0; count < 20; ++count)
{
 if ((count % 4) == 0)
 {
 continue;
 }
 Serial.println(count);
}

In this example, we can read this code as

while the count is less than 10, rotateMotors()

works and add 1 to count variable until the

count is equal 10.

This code can be read as follow:

While “a” is less than 10, the body

functions are going to work which is to give

an analog signal of variable a to port 12 if it

is not equal to 9, because if a is equal to 9,

the loop will break and end the loop.

This code can be read as

follow:

Count variable is defined as 0,

and it is increasing by 1 until it

is greater than 20, and every

change in count variable, it is

going to print its count variable

on the serial monitor, but not

numbers that can be divided by

4, as if variable count integer

divided by 4 is equal to 0, skip

the loop.

55
© 2019 Exceed Robotics TM

Return: Return function can be used in any loop or when defining a function. It gives a return

value of a loop or a function.

Example of using Return

int breakOrReturn() {
 while (True) {
 if (a == 1) {
 break;
 }
 else if (a == 2) {
 Return 1;
 }
 }
 Serial.println(“We broke out”)
 Return 0;
}

This example can be read as follow:

‘BreakOrReturn' function is defined with a return type of integer. Part of this function, while

loop is running until it is False. If “a” is equal to 1, then it will reach the end of the while loop

and returns the integer value of 0. If “a” is equal to 2, the function is going to return the

value of 1, and because it returns a value, the function is going to reach the end.

56
© 2019 Exceed Robotics TM

3.6 Using For Loops

For loop: A for loop is a repetition control structure that allows you to efficiently loop a condition

that needs to be executed a specific number of times. An increment counter is commonly used

to increment and eventually end the loop. The “for” statement is useful for repetitive operations,

and is often used with arrays to operate on collections of data.

For loops are more efficient and effective than while loop. In for loops, you know the specific

amount of times that the condition must be met. However, in a while loop, you have no idea

when to stop the code. By having a specific amount, this allows the code to run efficiently. You

can use while loops every time as it is simpler and easier to use than a for loop. However, the

efficiency of your code will drop drastically.

In general, the for loop will have the following forms:

The initialization step is executed first, and only once. This step allows you to declare and

initialize any loop control variables.

The condition is evaluated next. If it is true, “the statement block” or the body of the loop is

executed. If it is false, the body of the loop does not perform, and the flow of control jumps to

the next statement after for loop.

After the body of the for loop executes, the flow of control jumps back up to the increment

statement to be increased then the condition is tested again. This statement allows you to

update any loop control variables. When the condition becomes false, the loop ends.

for (initialization; condition; increment)

{

 Statement(s)

}

57
© 2019 Exceed Robotics TM

\

Example of a For Loop

for (a = 10; a < 20; a = a + 1)
{
 analogWrite(motor1, a);
 delay(1000);
}

Figure 3-3. The flow diagram showing how a for

loop works

This example can be read as follow:

Motor named ‘motor1’ rotates the

angle of the variable, “a,” which is

counted 10 to 19 increasing by 1

degree every second.

58
© 2019 Exceed Robotics TM

3.7 Nested Loops

Nested Loops are loops within a loop, an inner loop within the body of an outer loop.

In general, the nested loops will have the following form:

Example of a Nested Loop

for (counter = 0; counter <= 9; counter++)
{
 // statement block will be executed 10 times
 for (i = 0; I <= 99; i++)
 {
 //statement block will be executed 100 times
 }
}

for (initialize; control; increment or decrement)

{

 // statement block

 for (initialize; control; increment or decrement)

 {

 // statement block

 }

}

This example can be read as follow:

The counter is equal to 0. If the counter is less or equal than 9, then the counter will add 1 to
itself and the statement block will be executed ten times, because the counter goes from 0 to
9. or the second loop, “i” is equal to 0. If “i” is less or equals to 99, then “i” will add 1 to itself
and statement block will be executed 100 times. As the counter starts from 0 and goes all the
way to 99.

59
© 2019 Exceed Robotics TM

3.8 Defining Functions

Functions are segments of code which allows a programmer to create modular pieces of code

to perform a defined task and returns to the area of code from which the function was “called.”

The typical case for creating a function is when one needs to perform the same action multiple

times in a program. Functions also help the programmers stay organized, and they make the

code run more smoothly and efficiently.

There are two required functions in an Arduino sketch, the setup() and loop(). Other functions

must be created outside the brackets of these two functions.

Before a function can be used in a sketch, it must be created. The following code is an

example of a function that was created to print a dashed line in the Arduino IDE.

Void DashedLine()

{

 Serial.println(“---------------”);

}

Figure 3-4. Structural Diagram showing the common syntax for creating a function.

60
© 2019 Exceed Robotics TM

“Void” is a Return type.

“DashedLine” is a Function Name.

“Serial.println” is a statement that runs when the function is called.

Figure 3-5. Components of a simple Arduino Function

When creating a function, it must be given a name and ends with parentheses ().

A function must have a return type. The example function does not return anything, so

has a return type of void.

The function body is made up of statements placed between braces {}. The statements

make up the functionality of the function (what the function will do when it is called).

When a function is used, it is said to be "called". To use the function that we have

created, it must be called in a sketch.

To call a function, use the function name followed by opening and closing parentheses.

Finally, terminate the statement that calls the functions with a semicolon.

61
© 2019 Exceed Robotics TM

The code example below shows calling and using the function made:

Helpful

Steps

to follow!

Void setup()

{

 Serial.begin(9600);

 DashedLine();

 Serial.println(“| Program menu |”);

 DashedLine();

}

Void loop()

{

}

Void DashedLine()

{

 Serial.println(“----------------”);

}

The function above should print this:

| Program Menu |

Figure 3-6. Calling a function in Arduino.

62
© 2019 Exceed Robotics TM

3.9 Mapping Function

The map command is a built-in function used for

the conversion of values into a proportional value

set by the ratio between the inputted range of

values. by using the map function, there is no

longer a need to manually calculate a conversion

ratio as the function does it for you.

Below is an example of calling and using the map function

The function has 5 components, first is the value

being converted, the next 2 values are the

original range in values, from smallest to largest

value. the last two components are the range of

values you want the original value converted to,

smallest to largest.

{

 map(value, fromLow, fromHigh, toLow, toHigh)

}

void setup() {

}

void loop() {

 int val = analogRead(0);

 val = map(val, 0, 1023, 0, 255);

 analogWrite(9, val);

}

63
© 2019 Exceed Robotics TM

CHAPTER 4: INTRODUCTION TO ARDUINO BASICS

64
© 2019 Exceed Robotics TM

4.1 Parts You Will Learn

In this part of the chapter, you will learn about the basic parts Arduino has to offer. We will

study the Arduino UNO board because it is the most popular board in the Arduino board family.

The Arduino UNO board is a microcontroller that can create many cool projects such as full

robotic arms, or an autonomous car. The advantages of Arduino include it being inexpensive, it

is cross-platform (multiple people can work on it) and it is open source (source code is made

freely available and may be redistributed and modified so you can modify and build upon

another person’s code).

Some boards look a bit different from the one given below, but most Arduinos have most of

these components in common. It has 14 digital input/outputs pins, six analog inputs, a 16MHz

ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It

contains everything needed to support the microcontroller; directly connect it to the computer

with a USB cable or power it with a battery to get started. Think of the Arduino UNO as the

brains of your machine and your operations.

 4.1.1 Arduino UNO

65
© 2019 Exceed Robotics TM

Benefits of using the Arduino Uno Plus:

- More stable USB serial chip

- 3.3V or 5V can be connected to 3.3V sensors

- More IO ports

- Extended Serial communication

- Special DC-DC design that can drive high current loads

- Input voltage of 6-15V

- Type-C interface

66
© 2019 Exceed Robotics TM

I/O stands for Input and Output

Arduino can take some data from INPUTs and decided what to do using its OUTPUTs.

There are also two types of Outputs in Arduino; one is digital and the second one is analog

output. Compare them with human input. Eyes, ears, taste and feeling are inputs to our brain.

Hands and legs are outputs.

Arduino UNO Input and Output Limits:

67
© 2019 Exceed Robotics TM

This Arduino UNO board chart will give you all the necessary information needed for you to work

on future projects. This chart contains different kinds of information.

Arduino Uno Information Table

Pinouts Physical Specs

Price Points $17.99-$22.00 DC Current for 2.3V Pin 50 mA

USB Connectivity Standard A/B USB SRAM 2 KB

Voltage Level 5V EEPROM 1 KB

Digital I/O Pins

14 (of which 6

provides PWM

output)

Clock Speed 16 MHz

Ethernet/Bluetooth
No(a Shield/module

can enable it)
Length 66.6 mm

Analog Input Pins 6 Width 52.4 mm

DC Current per I/O

Pin
20 mA Flash Memory 32

Processor ATmega328P Shield Compatibility Yes

68
© 2019 Exceed Robotics TM

4.1.2 Arduino MEGA

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It

has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4

UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack,

an ICSP header, and a reset button. It contains everything needed to support the

microcontroller; just connect it to a computer with a USB cable or power it with an AC to-DC

adapter or battery to get started. The Mega is compatible with most shields designed for the

Arduino Duemilanove or Diecimila.

Figure 4.4. The Arduino Mega Board.

69
© 2019 Exceed Robotics TM

This Arduino MEGA board chart will give you all the necessary information needed for you to

work on future projects.

Arduino Mega Information Table

Pinouts Physical

Characteristics

Price Points $36.61 - $37.00 DC Current for 2.3V

Pin

50 mA

USB Connectivity Standard A/B USB SRAM 8 KB

Voltage Level 5V EEPROM 4 KB

Digital I/O Pins 54 (of which 15

provides PWM

output)

Clock Speed 16 MHz

Ethernet/Bluetooth No (a Shield/module

can enable it)

Length 101.6 mm

Analog Input Pins 16 Width 52.4 mm

70
© 2019 Exceed Robotics TM

DC Current per I/O

Pin

20 mA Flash Memory 256

Processor ATmega2560 Shield

Compatibility

Yes

4.1.3 Arduino NANO

Arduino NANO is very similar to Arduino UNO, they use the same processor (ATmega328P).

However, the main difference between these two would be their size. Arduino NANO is much

smaller than Arduino UNO. This can give an advantage and a disadvantage depending on the

situation. Arduino NANO is much easier to use as it can fit anywhere. Its size allows it to be

more flexible in terms of structures and builds. Arduino NANO is breadboard compatible. It

lacks only a DC power jack and works with a Mini-B USB cable instead of a standard one.

Figure 4-6. An Arduino NANO.

71
© 2019 Exceed Robotics TM

Arduino NANO Information Table

Pinouts Physical

Characteristics

Analog Pins A0 – A7 DC Current for 3.3V

Pin

50 mA

Analog Input Pins A0 – A5 SRAM 2 KB

SPI 10 (SS), 11 (MOSI),

12 (MISO) and 13

(SCK)

EEPROM 1 KB

Digital I/O Pins 14 (Out of which 6

provide PMW output)

Clock Speed 16 MHz

External Interrupts 2, 3 Recommended Input

Voltage for Vin pin

7-12V

Inbuilt LED 13 Operating Voltage 5V

DC Current per I/O

Pin

40 mA Flash Memory 32 KB (2 KB is

used for

Bootloader)

PMW 3, 5, 6, 9, 11 Processor ATmega2560

4.1.4 Breadboard

A breadboard is a board used for

making an experimental model of an

electric circuit. It helps us build

circuits by avoiding tedious and

complicated wiring. It makes it easy

to make circuits connections as the

breadboard has internal connections,

so we don’t have to connect every

one of our various components using

wires physically or require soldering.

Figure 4-8. A breadboard top view.

72
© 2019 Exceed Robotics TM

A breadboard is connected like this image depicts it. You merely place the components and

wires in their rows or columns, depending on how they should be connected. Be careful to not

accidentally set the multiple pins of a single component in the same row. The bar rows of metal

strips on the bottom of the breadboard have little clips that allow you to stick a wire or the leg

of a component into the exposed holes on a breadboard, which then holds the component in

place.

Once inserted that component will be electrically connected to anything else placed in that row.

This is because the metal rows are conductive and allow current to flow from any point in that

strip.

When building a circuit, you tend to need power in lots of different places. The power rails give

you lots of easy access to power wherever you need it in your circuit. Usually they will be

labeled with a ‘+’ and a ‘-’ and have a red, blue or black stripe, to indicate the positive and

negative sides.

Figure 4-9. A breadboard with the internal wiring shown to see the connections.

73
© 2019 Exceed Robotics TM

4.1.5 LED (Light-Emitting Diode)

Current passing through a diode can only go in one direction, called the forward direction.

Current trying to flow the reverse direction is blocked.

If the voltage across a diode is negative, no current “Can flow”, and the ideal diode looks like

an open circuit. In such a situation, the diode is said to be off or reverse biased. If the voltage

across the diode isn’t negative, it’ll “turn on” and conduct current. Ideally, a diode would act like

a short circuit (0V across it) if it was conducting current. When a diode is conducting current,

it’s forward biased.

Every diode has two terminals -- connections on each end of the component -- and those

terminals are polarized, meaning the two terminals are distinctly different. It's important not to

A light-emitting diode (LED) is a

semiconductor device that emits

visible light when an electric current

pass through it.

Figure 4-10. An LED and its circuit symbol.

74
© 2019 Exceed Robotics TM

mix the connections on a diode up. The positive end of a diode is called the anode, and the

negative end is called the cathode. Current can flow from the anode end to the cathode, but

not the other direction. The short leg (cathode, or negative lead) always connects to ground.

Depending on the voltage applied across it, a diode will operate in one of three regions:

1. Forward bias: When the voltage across the diode is positive the diode is "on" and

current can run through. The voltage should be greater than the forward voltage (VF) for

the current to be anything significant.

2. Reverse bias: This is the "off" mode of the diode, where the voltage is less than VF but

greater than Breakdown Voltage In this mode current flow is (mostly) blocked, and the

diode is off.

3. Breakdown: When the voltage applied across the diode is very large and negative, lots

of current will be able to flow in the reverse direction, from cathode to anode.

What is Positive and Negative Voltage?

Negative voltage in a circuit is voltage that is more negative in polarity than the ground of the

circuit.

A voltage source has positive or negative polarity depending on its orientation in a circuit. In

the case when a voltage source has negative voltage, it just means the negative terminal of

the battery is connected to the positive side of the circuit and the positive terminal of the

battery is connected to the negative side of the circuit.

Figure 4-11. An illustration of positive and negative voltage. The first circuit is oriented

one way and the other circuit is oriented the same way but with the voltage source

flipped around, so that is has opposite polarity orientation than the first.

75
© 2019 Exceed Robotics TM

The first circuit is positive voltage because the positive end of the voltage is connected to the
positive end of the source is not connected to ground.

The second circuit is the exact opposite, where the positive end of the voltage source is
connected to ground, while the negative end is not. An LED is a device that only turns when
the anode of the LED is supplied to positive voltage and the cathode with negative voltage.
Therefore, only the first circuit's LED turns on, while the second circuit's LED doesn't.

If you need more information or you still have questions, you can visit the link below:
Reference: https://learn.sparkfun.com/tutorials/diodes &
http://www.learningaboutelectronics.com/Articles/What-is-negative-voltage

2 Pin LED example:

3 Pin LED example:

Led Arduino
+ 5V

- GND

S 8

Led Arduino
+ 5V

- 7

https://learn.sparkfun.com/tutorials/diodes
http://www.learningaboutelectronics.com/Articles/What-is-negative-voltage

76
© 2019 Exceed Robotics TM

LED Blink Code Example:

void setup() {

 pinMode(8, OUTPUT); //Set pin 8 as an output

}

void loop(){

 digitalWrite(8, HIGH); //Turn on the LED

 delay(1000);

 digitalWrite(8, LOW); //Turn off the LED

}

4.1.6 RGB LED

77
© 2019 Exceed Robotics TM

Just like a regular LED, an RGB LED follows the same rules with one difference. The RGB

LED has multiple inputs so unlike a regular LED where all that can be controlled is the

brightness, the RGB LED allows for control over the color and hue of the omitted light.

A RGB LED has four terminals, three Cathodes and one Anode. The Anode will be the longest

of the four terminals and must be connected to ground. The three cathode terminals represent

the primary colors, Red, Green and Blue. Sending Negative Voltage through each of their

respective Cathodes will produce their color. they can be identified by their position in relation

to the Anode.

A Red-Green-Blue light-emitting

diode (RGB LED) is a combination of

3 LED’S in one component. By

sending Negative Voltage through the

Red, Green and Blue cathods, the

colors mix based on the amount of

power given creating different colours

and hues

By controlling the intensity of each of

the 3 primary colors through a

microcontroller, any color on the

spectrum can be created

78
© 2019 Exceed Robotics TM

RGB

Led

Arduino

V 5V

R 9

G 6

B 5

RGB Code example:

void setup() {

 pinMode(9, OUTPUT); //set pin 9 as output (red)

 pinMode(5, OUTPUT); //set pin 5 as output (blue)

 pinMode(6, OUTPUT); //set pin 6 as output (green)

}

void loop(){

RGB Led Arduino
R 9

- GND

G 6

B 5

79
© 2019 Exceed Robotics TM

for(int val = 0; val < 255; val++){

 analogWrite(6, val); //set green value to val

 analogWrite(9, 255-val); // set red value to 255 - val

 analogWrite(5, 128-val); //set blue value to 128 - val

 delay(1);

 }

}

4.1.7 Jumper Wires

Jumper wires are wires you use when

you build prototype circuit to try out

new concepts. They may be short

pieces of stiff wire as shown in the

picture, or they may be a flexible wire

with pins on either end. They connect

the circuit, allowing the electricity to

flow through to different parts of the

Arduino.

Figure 4-12. Multi-coloured jumper wires.

As you can see, there are three types of wires

in Arduino. There are Male-Male wires (left-

side bunch), Female-Female wires (the

middle bunch) and Male-Female wires (right-

side bunch). Each of them plays a specific

role when creating an Arduino circuit.

Figure 4-13. Jumper Wires

80
© 2019 Exceed Robotics TM

Jumper wires typically come in three versions: male-to-male, male-to-female and female-to-

female. The difference between each of the different wires are their endpoints of the wire. Male

ends have a pin that can plug into things, while female ends do not. The female wires are used

to plug things into. Male-to-male jumper wires are the most common. When connecting two

ports on a breadboard, a male-to-male wire is what you will need.

4.1.8 Resistors

81
© 2019 Exceed Robotics TM

Resistors are passive components, meaning they only consume power (and can’t generate it).

Resistors are usually added to circuits where they complement active components like

microcontrollers, and other integrated circuits. Commonly resistors are used to limit current,

divide voltages, and pull-up I/O lines.

4.1.9 Pull-Down Resistors

A Pull-Down Resistor ensures a known state for a signal. This is needed due to the pin being

vulnerable to electrical noise (outside electrical interference) which can result in a change of

state due to the pin receiving a signal. This is prevented by R1 so that even when the circuit is

open, any electrical interference is grounded through the resistor. A resistor is used instead of

a straight to ground wire because the electrons will flow straight to ground when the button is

pressed and not flow to the pin at all creating a short circuit, with a resistor the electrons

choose the path of least resistance allowing power to flow to the pin when the button is

pressed.

Figure 4-14. Resistors are electronic components which have a specific, never-changing

electrical resistance. The resistor’s resistance limits the flow of electrons through a circuit.

Note: The chart above and images of resistors shown can be used as a guide to learn how

to calculate the resistance of any resistor based on the band colours.

82
© 2019 Exceed Robotics TM

4.1.10 Pull-Up Resistors

A Pull-up resistor just like a Pull-Down resistor is a resistor that ensures a known state for a

signal. When the switch is open, then the circuit disconnects, and the current is not able to flow

through the circuit. When the switch is closed, the circuit is connected, and current can flow.

For a switch that connects to ground, a pull-up resistor ensures a well-defined voltage (i.e. VCC,

or logical high) across the remainder of the circuit when the switch is open.

4.1.11 Transistors

A Transistor is a semiconductor device used to amplify or switch electronic signals and

electrical power. Think of it as an electric switch. A small current at the Base/Gate terminal

can control or switch a much larger current between the Collector/Source and

Emitter/Drain terminals.

Types Of Transistors

Bipolar Junction Transistor (BJT)

A BJT transistor has three legs: Base (control), Collector (supply +), Emitter (supply -)

83
© 2019 Exceed Robotics TM

Metal-Oxide Field-Effect Transistor (MOSFET)

A MOSFET transistor has three legs: Gate (control), Source (supply +), Drain (supply -)

84
© 2019 Exceed Robotics TM

4.1.12 Voltage Divider

A Voltage Divider is a circuit designed to divide the drop in voltage across two resistors, this

circuit is made by having two resistors be in series in a closed loop.The purpose of a Voltage

Divider is to be able to determine the voltage drop across the second resistor. If R1 were to be

removed from the above diagram, then the voltage drop would be across only a single resistor

and would always be the same value as Vs. No matter what the resistance of the resistor was,

the voltage drop would always be the same and only the current would be different. By adding

a fixed resistor (R1) before the variable resistor (R2), it is now possible to determine the

varying voltage drops of R2 thanks to Kirchhoff’s Voltage Law (KVL). By following KVL an

equation can be used to determine the voltage drop of R2

 By controlling the value of R1, the range of values read by the Arduino can be adjusted, which

allows for the voltage divider to be used for a control circuit with fairly precise control of

voltage.

85
© 2019 Exceed Robotics TM

4.1.13 Buzzers

2 Pin Buzzer Example:

Buzzer Arduino

Board
+ 8

- GND

3 Pin Buzzer Example:

A buzzer or beeper is an audio signaling device, which may be mechanical,

electromechanical, or piezoelectric (piezo for short). Typical uses of buzzers include alarm

devices, timers, and confirmation of user input such as a mouse click or keystroke. It is an

output device that takes the digital pulse and converts it to a monotone sound by vibrating.

86
© 2019 Exceed Robotics TM

Sample Code to Program a Buzzer:

const int buzzer = 8; // Set the buzzer as pin 8

void setup()
{
 pinMode(buzzer, OUTPUT); // Set pin 8 as an Output
}

void loop()
{
 tone(buzzer, 440); // Make noise for the buzzer at pin 8
 delay(1000); // Wait for 1000 millisecond(s)
 noTone(buzzer); // Stop the noise for the buzzer at pin 8
 delay(1000); // Wait for 1000 millisecond(s)
}

Buzzer Arduino

Board
- GND

+ 5V

S 8

Figure 4-16. Wiring Diagram and Pin Connections for a simple buzzer.

87
© 2019 Exceed Robotics TM

4.2 Buzzer Library

Functions to sound a Buzzer:

Tone (pin#, Frequency)

This function generates a square wave of specified frequency (and 50% duty cycle) on a pin. A
duration can be specified. Otherwise, the wave continues until a call to:

 noTone(pin#)

Library name:
#include <NewTone.h>

Declaration:
None

Functions:

NewTone(pinNumber, frequency);

NewTone(pinNumber, frequency, Length);

noNewTone(pinNumber);

If you need more information or you still have questions, you can visit the
link below:
Reference: https://bitbucket.org/teckel12/arduino-new-tone/wiki/Home

https://bitbucket.org/teckel12/arduino-new-tone/wiki/Home

88
© 2019 Exceed Robotics TM

4.3 Building Your First LED Circuit

Sample Code

int led = 13; // the pin the LED is connected to

void setup()

{

 pinMode(led, OUTPUT); // Declare the LED as an output

}

void loop()

{

 digitalWrite(led, HIGH); // Turn the LED on

}

Figure 4-17. A simple circuit with an LED.

 This diagram shows a basic circuit to light up an LED. Go on TinkerCad and try building the

circuit yourself. Then use the sample code below to program it and experiment with the

code itself to see how you can change it.

89
© 2019 Exceed Robotics TM

4.4 Code Breaker Challenge

PRACTICE QUESTIONS

1. Blinking LED

 Build the code for this circuit, which

makes the LED blink every second.

Figure 4-18. Simple LED circuit.

2. Blinking Buzzer

 Build the code for the circuit which

makes the buzzer make a sound

every second.

Figure 4-19. Simple Buzzer circuit.

3. Flip flop LED

Build the code for the circuit

above which the LED is

alternately turned on and off

using this circuit.

Figure 4-20. Simple Buzzer circuit.

90
© 2019 Exceed Robotics TM

\

4.5 Homework Questions

Q1.

4. Siren

 Build the code which the

red and blue LEDs are

alternately blinking, and

buzzer makes the siren

noise using this circuit.

Figure 4-21. An LED and Buzzer combined circuit.

5. Morse Code Sender

 Build the code which the
buzzer works with 523Hz
when the pushbutton is
pressed using this circuit
above.

Figure 4-22. Buzzer circuit.

Figure 4-23. A two Buzzer circuit.

91
© 2019 Exceed Robotics TM

Figure 4-24. The code for the Arduino Circuit Above.

Construct the following circuit.

Using the Serial monitor output the readings from the digital pins connected to the
buttons.

Note: the serial monitor is used for the Arduino to communicate with the computer. It can
also be used to display information on the computer screen.

To initialize the serial monitor, use (put in the setup):
Serial.begin(9600);

At any point to output information to the screen use: Serial.println(“
”);

Compare the results from the serial monitor to the circuit design. Can you explain
what happens?

List possible applications for each circuit configuration. Is one better than the

other?

92
© 2019 Exceed Robotics TM

Q2. Create Your Own Working Arduino Piano!

The project should include:

● 1 Arduino

● Eight push buttons

● Eight resistors

● One buzzer

● One breadboard

Reminder: To use the buzzer you can make use of the built-in function’s ‘tone’ and ‘noTone.’

To turn the buzzer on:

tone(pin, frequency); //pin refers to where the buzzer is a plugin, frequency

refers to the sound

To turn the buzzer off:

noTone(pin);

Useful information: To produce a simple scale on a piano, each key must be tuned correctly.

Frequencies for the c Major scale are listed below:

Note Frequency Simple Buzzer Circuit

c 261 Hz

d 294 Hz

e 329 Hz

f 349 Hz

g 392 Hz

a 440 Hz

b 493 Hz

C 523 Hz

Figure 4-25. Buzzer Circuit

93
© 2019 Exceed Robotics TM

Q3. (Challenge)

Create the following circuit. Write a program that toggles the state of the LED when the button

is pressed. In other words, if the LED starts, it remains off until the button is pressed. Then the

LED remains off until the button is pressed again.

Hint: To achieve this it is likely that you will need to create two additional variables. One to

keep track of whether the LED is on or off, and one to keep track of whether the button has

been released.

 C d e f g a b C

Figure 4-27. The layout of note on the keyboard (from left to right):

Figure 4-28. Circuit Layout of the Button.

94
© 2019 Exceed Robotics TM

Multiple Choice Questions:

1. What is the voltage range of the Vin pin?
a. 2.3 - 5.0V
b. 6.0 - 12.0V
c. 7.0 - 10.0V

2. The Arduino CAN NOT be powered by ______.

a. Barrel jack
b. USB cable
c. Digital I/O (input/output) pins

3. The integrated Voltage Regulator on the Arduino board CANNOT convert ____ to a
stable 5V supply

a. USB cable voltage
b. Barrel jack voltage
c. Vin pin voltage

4. If the total output current is higher than _____, the integrated fuse on your Arduino will
trip

a. 500mA.
b. 200mA
c. 400mA

5. What is the output voltage and maximum current of a digital or analog I/O pin?

a. Output voltage=5V, max current=40mA
b. Output voltage=3.3V, max current=400mA
c. Output voltage=5V, max current=200mA

6. Which of these devices are considered an Output device?

a. Temperature Sensor
b. Keyboard
c. LCD Screen

7. In which of these current/voltage values will an LED turn on?
a. Current>100mA and Voltage >=1.8V
b. Current<20mA and Voltage >=1.8V
c. Current>10mA and Voltage < 1.8V

8. Which component(s) could be used to limit current?

a. Resistor
b. Battery

95
© 2019 Exceed Robotics TM

c. LED

TASK BASED

1. Calculate the resistor value needed to turn on an LED using a 12V battery?

use Ohm’s law to calculate with max current the Arduino could provide

2. In TinkerCAD, design a circuit that turns on an LED using a 3V battery

96
© 2019 Exceed Robotics TM

3. Write a program to turn on an LED using the resistor from Question #1 above.

4. Given the same circuit above, modify your program to turn on the LED for 1 second and
turn it off for 500 milliseconds.

5. Modify your program to complete the actions below:

a. Turn ON all LEDs for 1000 milliseconds
b. Turn OFF all LEDs for 1000 milliseconds
c. Turn ON just the Green LEDs for 1000 milliseconds
d. Turn OFF all LEDs for 1000 milliseconds
e. Turn ON just the red LEDs for 1000 milliseconds
f. Turn OFF all LEDs for 1000 milliseconds
g. Turn ON just the blue LED for 1000 milliseconds
h. Turn OFF all LEDs for 1000 milliseconds

97
© 2019 Exceed Robotics TM

FIND THE ERROR(TROUBLESHOOT)
In this section, the objective is to find the error in the code snippet and the circuits.

1. The following circuit should turn on the LED, but it does not work. Can you find the
error and fix it?

98
© 2019 Exceed Robotics TM

2. The following code should set pin 13 as an output pin. When you run the code, you get
an error. What is the error? Can you fix this error?

3. The following code should turn on each LED one by one in the circuit below. It should
turn on each LED for 1000 milliseconds, turn it off for 500 milliseconds, and repeat the
same sequence for the other LEDs. However, it doesn’t work. Can you find the error and fix
it?

99
© 2019 Exceed Robotics TM

100
© 2019 Exceed Robotics TM

CHAPTER 5: WORKING WITH SENSORS

101
© 2019 Exceed Robotics TM

5.1 Parts You Will Learn

Now that you have learned the basics parts of the Arduino. You can start learning more about

different types of Sensors that the Arduino can provide you with. Each sensor has different

outputs and different functions. With the sensors, you can make more complex and exciting

builds, with higher and greater outputs. Think of the Arduino sensors as sensors that you have

in your body. They are similar. Humans have eyes that can see, those eyes send a signal to

your brain, and then your brain converts this signal so that you can have a vision and sight.

Arduino is pretty much the same. It takes input from a sensor and then sends this input to the

Arduino circuit board. After that, you can tell the Arduino to light the LED when the data from

the sensor is True. Sensors are very crucial towards the Arduino structure as they are the

inputs of your circuit.

5.1.1 Push Button

Specification Table

Working Voltage: DC 5V

Rating: 50mA / 12VDC

Contact Resistance: 100m max

Insulation Resistance: 100M min

Dielectric Strength: 250VAC for 1 minute

Operating Life:
300,000 cycles per

minute

Operating Temperature: -25C + 70C

Size: 6.2*4.5mm

Figure 5-1. Push Buttons

A push button is a simple switch mechanism for controlling some aspect of a machine

or a process. A switch is an electrical component that can "make" or "break" an

electrical circuit, interrupting the current or diverting it from one conductor to another.

The mechanism of a switch removes or restores the conducting path in a circuit when it

is operated.

102
© 2019 Exceed Robotics TM

4 pin push button Example

3 Pin Push button Example:

Push Button Sample Code:

int buttonState = 0; // Set ButtonState as 0

void setup()
{
 pinMode(3, INPUT); // Set pin 3 as an Input

Push Button Arduino
1 3

3 GND

4 5V

Push Button Arduino
+ 5V

- GND

S 3

103
© 2019 Exceed Robotics TM

 pinMode(13, OUTPUT); // Set pin 13 as an Output
}

void loop()
{
 buttonState = digitalRead(3); // Read the value assign it to buttonState

 if (buttonState == HIGH) // If buttonState is equals to high
 {
 digitalWrite(13, HIGH); // Turn on the electricity on the pin 13
 }

 else // if not, then
 {
 digitalWrite(13, LOW); // Turn off the electricity on the pin 13
 }
 delay(10);
}

5.1.2 Reed Switch (Magnetic Sensor)

Specification Table

Working Voltage: DC 2.3V-5V

Working Current ≥20mA

Operating Temperature: －10℃—＋50℃

Size: 30*20mm

104
© 2019 Exceed Robotics TM

Detection Distance: ≤10mm

4 Pin Code Example:

Reed Switch Arduino
A0 A0

G GND

+ 5V

D0 3

Figure 5-2. Reed Switch (Magnetic Sensor)

The reed switch is an electrical switch operated by an applied magnetic field. The contacts

may be normally open, closing when a magnetic field is present, or normally closed and

opening when a magnetic field is applied. The switch may be actuated by a coil, making a

reed relay or by bringing a magnet near to the switch. Once the magnet is pulled away from

the switch, the reed switch will go back to its original position.

An example of a reed switch application is to detect the opening of a door when used as a

proximity switch for a burglar alarm.

105
© 2019 Exceed Robotics TM

3 Pin Code Example

Reed Switch Sample Code:

int led = 13; // Set LED pin as 13
int reelSwitch = 3; //Set reed switch pin as 3
int switchState; // variable to store reel switch value

void setup()
{
 pinMode (led, OUTPUT); // Set pin 13 as an OUTPUT
 pinMode (reelSwitch, INPUT); // Set pin 3 as an INPUT
}

void loop()
{
 switchState = digitalRead(reelSwitch);
 // read the value of digital interface 2 and assign it to switchState
 // when the magnetic sensor detect a signal, LED is flashing
 if (switchState == HIGH)
 {
 digitalWrite(led, HIGH);
 }
 else
 {
 digitalWrite(led, LOW);

Reed Switch Arduino
+ 5V

- GND

S 3

106
© 2019 Exceed Robotics TM

 }
}

5.1.3 PIR Motion Sensor

Specification Table

Input Voltage: 2.3 ~ 5V, 6V Maximum

Working

Current
15uA

Operating

Temperature:
-20 ~ 85 ℃

Output

Voltage:
High 3V, low 0V

Detection

Distance:
≤10mm

Output Delay

Time (High

Level):

About 1.3 to 3 Seconds

107
© 2019 Exceed Robotics TM

Detection

angle:
100 °

Detection

distance:
7 meters

Output

Indicator LED

(When output HIGH, it

will be ON)

Pin limit

current:
100mA

Size: 30*20mm

Weight: 4g

Figure 5-5. PIR Motion Sensors.

A passive infrared (PIR) sensor measures infrared light emitted from objects that generate

heat, in its field of view. Crystalline material at the center of a rectangle on the face of the

sensor detects the infrared radiation. The sensor is split into two halves to identify not the

radiation itself, but the change in condition that occurs when a target enters its field. These

changes in the amount of infrared radiation on the element, in turn, change the voltages

generated, which are measured by an onboard amplifier. When motion is detected the PIR

sensor outputs a high signal on its output pin, which can either be read by an MCU or drive

a transistor to switch a higher current load.

108
© 2019 Exceed Robotics TM

PIR Sample Code:

int sensor = 3; // Set sensor as a pin 3

void setup()
 {
 pinMode(sensor, OUTPUT); // Set pin 3 as an OUTPUT
 pinMode(13, OUTPUT)
 Serial.begin(9600);
 }

void loop()
 {
 int state = digitalRead(sensor);
 // If the state of the sensor is equals to 1
 if (state == 1)
 {
 Serial.println("True"); // print True
 digitalWrite(13, HIGH); // turn on the on board LED
 }

 else //if not
 {
 Serial.println("False"); // print False
 }
}

Motion Sensor Other
+ 5V

- GND

S 3

109
© 2019 Exceed Robotics TM

5.1.4 Potentiometer

Potentiometer Sample Code:

int sensorValue = 0; // define a sensorValue as 0

void setup()

Specification Table

Working voltage: 5V

Size: 16*34mm

Weight: 7g

Potentiometer Arduino

+ 5V

- GND

S A0

Figure 5-7. Potentiometers.

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an

adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a

variable resistor. Potentiometers are commonly used to control electrical devices such as

volume controls on audio equipment.

110
© 2019 Exceed Robotics TM

{
 pinMode(A0, INPUT); //define pin A0 as an Input
 pinMode(13, OUTPUT); //define pin 13 as an OUTPUT
}

void loop()
{
 sensorValue = analogRead(A0);
 //sensorValue equals to input from analogRead

 if(sensorValue >= 1){ //if the sensor is greater or equal to 1
 digitalWrite(13, HIGH); //turn on the on board LED
 delay(sensorValue); //delay to the amount that the sensorValue has
 digitalWrite(13, LOW); //turn off the on board LED
 }
}

5.1.5 Photoresistor

Specification Table

Working voltage: 5V

Size: 38*20mm

Weight: 5g

Figure 5-9. Photosensors.

Photoresistor (Photovaristor) is a resistor whose resistance varies from different incident

light strength. It's made based on the photoelectric effect of a semiconductor. If the incident

light is intense, its resistance reduces; if the incident light is weak, the resistance increases.

Photovaristor is commonly applied in the measurement of light, light control and

photovoltaic conversion (convert the change of light into the change of electricity).

111
© 2019 Exceed Robotics TM

A photoresistor is also widely applied to the various light control circuit, such as light control and

adjustment, optical switches, etc. Photovaristor is an element that will change its resistance as

light strength changes. So, it needs to read the analog values.

The three pronged Photoresistor is not the only version, a photoresistor can also have two

prongs. The difference between the two is that the three pronged resistor has an internal voltage

divider, this allows for direct measurements of the change in resistance. The two pronged

resistor does not have an internal voltage divider, so an external voltage divider must be used

to measure a change in voltage.

Pin Connections

[+] → [+5V]

[-] →[GND]

[S] → [3]

112
© 2019 Exceed Robotics TM

Photoresistor Sample Code:

int lightPin = 3; //define a pin for Photo resistor
int ledPin = 13; //define a pin for LED

void setup()
{
 Serial.begin(9600); //Begin serial communcation
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 Serial.println(analogRead(lightPin));
 //Write the value of the photoresistor to the serial monitor.

 analogWrite(ledPin, analogRead(lightPin) / 4);
 //send the value to the ledPin. Depending on value of resistor
 delay(10); //short delay for faster response to light.
}

113
© 2019 Exceed Robotics TM

5.1.6 Joystick

Specification Table

Supply Voltage: 2.3V to 5V

Size: 40*28mm

Weight: 12g

Interface Analog x2, Digital x1

A 2-Axis Joystick contains two independent potentiometers (one per axis) that can be used

as dually adjustable voltage dividers, providing 2-Axis analog input in a control stick form. The

modular form factor allows you to plug the 2-Axis Joystick directly into a breadboard for easy

prototyping. The 2-Axis Joystick includes spring auto return to center.

114
© 2019 Exceed Robotics TM

Joystick Sample Code:

const int SW_pin = 3; //set switch pin to 3
const int X_pin = 0; //set x pin to 0
const int Y_pin = 1; //set y pin to 1

void setup()
{
 pinMode(SW_pin, INPUT); //set switch pin to input
 digitalWrite(SW_pin, HIGH); //turn on the switch pin
 Serial.begin(115200); //begin the serial monitor
}

void loop()
{
 Serial.print("Switch: ");
 Serial.print(digitalRead(SW_pin));
 Serial.print("\n");
 Serial.print("X-axis: ");
 Serial.print(analogRead(X_pin)); //read and print value from the x pin
 Serial.print("\n");
 Serial.print("Y-axis: ");
 Serial.println(analogRead(Y_pin)); //read and print value from the y pin
 Serial.print("\n\n");
 delay(500);
}

Joystick Arduino

+ 5V

- GND

B 3

Y A0

X A1

115
© 2019 Exceed Robotics TM

5.2 Complex Sensors

5.2.1 Ultrasonic Sensors

Specification Table

Working Voltage: DC 5V

Working Current: 15mA

Working Frequency: 40Hz

Max Range: 5m

Min Range: 2cm

Measuring Angle: 15 degree

Size: 49*22mm

Figure 5-13. Ultrasonic Sensors

An Ultrasonic sensor is a device that can measure the distance to an object by using

sound waves. It measures distance by sending out a sound wave at a specific frequency

and listening for that sound wave to bounce back. By recording the elapsed time between

the sound wave being generated and the sound wave bouncing back, it is possible to

calculate the distance between the sensor and the object.

116
© 2019 Exceed Robotics TM

Ultrasonic Sensor Sample Code:

#include "NewPing.h" // Include NewPing Library

#define TRIGGER_PIN 8 // Set Trig to Arduino Pin 8
#define ECHO_PIN 7 // Set Echo to Arduino pin 7

// Maximum distance we want to ping for (in centimeters).
#define MAX_DISTANCE 400

// NewPing setup of pins and maximum distance.
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
float duration, distance;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 // Send ping, get distance in cm
 distance = sonar.ping_cm();

 // Send results to Serial Monitor
 Serial.print("Distance = ");

 if (distance >= 400 || distance <= 2)
 {

Ultrasonic

Sensor

Arduino

VCC 5V

GND GND

trig 8

echo 7

Figure 5-14. The wiring Diagram and Pin Connections for the Ultrasonic Sensor.

117
© 2019 Exceed Robotics TM

 Serial.println("Out of range");
 }
 else
 {
 Serial.print(distance);
 Serial.println(" cm");
 }
 delay(500);
}

5.2.2 Temperature Sensor

Specification Table

Supply Voltage: 2.3V to 5V

Temperature

range:
-55 °C ~ +125 °C

Size: 30*20mm

Weight 3G

A temperature sensor is a device, typically, a thermocouple and an RTD, that provides for

temperature measurement through an electrical signal. An RTD (Resistance Temperature

Detector) is a variable resistor that will change its electrical resistance in direct proportion to

changes in temperature in a precise, repeatable and nearly linear manner. There are two

kinds of temperature sensors, those with internal voltage dividers and those with external. If

the voltage divider is internal, the sensor will have three prongs. If the sensor has two prongs

a external voltage divider is needed,

118
© 2019 Exceed Robotics TM

Temperature

Sensor

Arduino

+ 5V

- GND

S 3

Figure 5-16. The Wiring Diagram and Pin Connections for a 3 pin temperature sensor.

Figure 5-17. The Wiring Diagram and Pin Connections for a 2 pin temperature sensor.

119
© 2019 Exceed Robotics TM

Temperature Sensor Sample Code:

float temperature;
int tempPin = 3; // Set temperature pin as 3

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 temperature = analogRead(tempPin);
 // Set the temperature as an analogRead pin 3
 temperature = temperature * 0.48828125;
 Serial.print("Temperature = ");
 Serial.print(temperature);
 Serial.println("C");
}

5.2.3 Flex Sensor

Specification Table

Working voltage: 5V

Size: 6.35*73.66mm

Weight: 0.27g

A Flex Sensor is a device that measures the amount of bending applied to it, it does so by

sending an electrical signal that can vary. The Flex Sensor is a form of variable resistor that will

change its electrical resistance in relation to the degree of bending done upon it. To get an actual

measurement from the sensor, an external voltage divider circuit must be used.

120
© 2019 Exceed Robotics TM

Flex Sensor Sample Code:

int flex = 0; //set to zero void

void setup()
{
 pinMode(A5, INPUT);
 Serial.begin (9600);
}
void loop()
{
 flex = analogRead (A0);
 Serial.println (“flex value = ”)
 Serial.println (flex);

 if(flex > 0){ //if the flex sensor is bent
 Serial.println(“flex sensor is bent”);
 }

}

121
© 2019 Exceed Robotics TM

5.2.4 Force Sensor

A Force Sensor is a device that measures the amount of pressure pressed on to it, The

Force Sensor is a form of variable resistor that will change its electrical resistance in relation

to the weight / pressure placed upon it. To get an actual measurement from the sensor, an

external voltage divider circuit must be used.

122
© 2019 Exceed Robotics TM

Force Sensor Smaple Code:

int force=0;

void setup()
{
 pinMode(A0, INPUT);
 Serial.begin(9600);
}

void loop()
{
 force = analogRead(A5);
 Serial.println(force);

 if(force > 0){ //if a force is sensed
 Serial.println(“force detected”);
}

123
© 2019 Exceed Robotics TM

5.2.5 Keypad

Specification Table

Max. circuit rating: 35VDC, 100Ma

Pad Size: 66.9 x 76 x 0.8mm

Cable length: 85mm (include connector)

Connector:
dupont 7 pins, 0.1-inch

(1.54mm) Pitch

Contact bounce: ≤5ms

Weight: 7g

Figure 5-17. The Keypad

Arduino allows you to read a matrix type keypad. You can find these keypads from old
telephones or from almost any electronics parts store. They come in 3x4, 4x4 and various
other configurations with words, letters and numbers written on the keys. They are internally
wired with switches in a matrix configuration (see below), which allows when a key is
pressed to determine the x and y location of that key.

124
© 2019 Exceed Robotics TM

Keypad Sample Code:

#include <Keypad.h>

const byte numRows = 4; //number of rows on the keypad
const byte numCols = 4; //number of columns on the keypad

//keymap defines the key pressed according to the row and columns just as
//appears on the keypad

char keymap[numRows][numCols] = {
 {'1', '2', '3', 'A'},
 {'4', '5', '6', 'B'},
 {'7', '8', '9', 'C'},
 {'*', '0', '#', 'D'}
};

//Code that shows the keypad connections to the Arduino terminals

byte rowPins[numRows] = {9, 8, 7, 6}; //Rows 0 to 3
byte colPins[numCols] = {5, 4, 3, 2}; //Columns 0 to 3

//initializes an instance of the Keypad class

Keypad myKeypad = Keypad(makeKeymap(keymap), rowPins, colPins, numRows,
numCols);

void setup()
{
 Serial.begin(9600);

Keypad Arduino

1 9

2 8

3 7

4 6

125
© 2019 Exceed Robotics TM

}

//If key is pressed, this key is stored in 'keypressed' variable
//If key is not equal to 'NO_KEY', then this key is printed out
//if count=17, then count is reset back to 0 (this means no key is pressed
//during the whole keypad scan process)

void loop()
{
 char keypressed = myKeypad.getKey();
 if (keypressed != NO_KEY)
 {
 Serial.print(keypressed);
 }
}

5.2.6 Sound Sensor

The sound sensor is an Arduino module that allows users to incorporate sound detection into their projects. It

uses a microphone to detect the loudness in the surrounding environment and sends the appropriate signals to

the Arduino board.

126
© 2019 Exceed Robotics TM

3 pin example:

4 pin example: (can use DO pin for digital out or AO pin for analog out):

Sound

sensor

Arduino

V 5V

G GND

S A0

Sound

sensor

Arduino

AO A0

G GND

+ 5V

127
© 2019 Exceed Robotics TM

Sound Sensor Code Example:

void setup() {

Serial.begin(9600); //Start the Serial monitor

}

void loop() {

int value = analogRead(A0); //Set the value variable to the analog read

from pin A0

Serial.println(value, DEC); //Print the value that was read from the

serial monitor

if(value >0){ //Run code if a sound was detected

 Serial.println("Sound detected!"); // Print sound detected to serial

monitor

 }

 delay(100); //Wait 0.1 seconds

}

128
© 2019 Exceed Robotics TM

5.2.7 Gyroscope and Accelerometer (MPU6050)

The gyroscope and accelerometer module allows users to measure rotational velocity and the rate of change of

the angular position in the X, Y, and Z axis over time. The MPU6050 has a 3 axis gyroscope and a 3 axis

accelerometer integrated on the chip. Note: the Adafruit_MPU6050.h and Adafruit_Sensor.h libraries will need

to be added to the Arduino IDE.

Gyroscope Arduino

VCC 5V

GND GND

SCL SCL

SDA SDA

129
© 2019 Exceed Robotics TM

Gyroscope Code Example:

#include <Adafruit_MPU6050.h>

#include <Adafruit_Sensor.h>

#include <Wire.h>

Adafruit_MPU6050 mpu; //create object from Adafruit_MPU6050 class

void setup() {

 Serial.begin(9600);

 mpu.setAccelerometerRange(MPU6050_RANGE_8_G); //set accelerometer

sensitivity to 8

 mpu.setGyroRange(MPU6050_RANGE_500_DEG); //set gyroscope range to 500

degrees per second

 mpu.setFilterBandwidth(MPU6050_BAND_21_HZ); //set bandwith to 21Hz

 delay(100);

}

void loop() {

 sensors_event_t accel, gyroscope; //create objects to hold the results

read from sensor

 mpu.getEvent(&accel, &gyroscope, NULL); //reads the result read from the

sensor

 Serial.print("X Acceleration: ");

130
© 2019 Exceed Robotics TM

 Serial.print(accel.acceleration.x); //print the X acceleration to serial

 Serial.print(", Y Acceleration: ");

 Serial.print(accel.acceleration.y); //print Y acceleration to serial

 Serial.print(", Z Acceleration: ");

 Serial.print(accel.acceleration.z); //print Z acceleration to serial

 Serial.println(" m/s^2");

 Serial.print(" X Rotation: ");

 Serial.print(gyroscope.gyro.x); //print x rotation to serial

 Serial.print(", Y Rotation: ");

 Serial.print(gyroscope.gyro.y); //print y rotation to serial

 Serial.print(", Z Rotation: ");

 Serial.print(gyroscope.gyro.z); //print Z rotation to serial

 Serial.println(" rad/s");

 delay(1000); //wait 1 second

}

131
© 2019 Exceed Robotics TM

5.2.8 Sensor Shield

Figure 7-1. The Arduino Sensor Shield.

This type of Sensor Board Shield simplifies the circuit in the sense to make the commonly

used sensors easily connected. It would be best if you only connected a sensor and after

finishing the circuit connection, compile the corresponding Arduino program and download it

to the Arduino MEGA controller to read the sensor data, or receive 7.1.1 returning data of

wireless module and finally finish your interactive project. This type of sensor shield draws

800mA of power.

https://wiki.keyestudio.com/Ks0004_keyestudio_Sensor_Shield_V5#Introduction

132
© 2019 Exceed Robotics TM

5.3 Sensor Library

Ultrasonic Sensor Library

Library name:

#include <Keypad.h>

Declaration:

NewPing sonar(Trigger, Echo, maxDistance);

Functions:

ping_cm();

ping_in();

If you need more information or you still have questions, you can visit the link below:
Reference: https://playground.arduino.cc/Code/NewPing

KeyPad Library

Library name:

#include <NewPing.h>

Declaration:

const byte rows = 4; //four rows

const byte cols = 3; //three columns

char keys[rows][cols] = {

 {'1','2','3'},

 {'4','5','6'},

 {'7','8','9'},

 {'*','0','#'}

};

byte rowPins[rows] = {A8,A9,A10,A11}; //connect to the row pinouts of the

keypad

byte colPins[cols] = {A12,A13,A14}; //connect to the column pinouts of the

keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, rows, cols);
Functions:

waitForKey();
If you need more information or you still have questions, you can visit the link below:
Reference: http://playground.arduino.cc/Code/Keypad

https://playground.arduino.cc/Code/NewPing
http://playground.arduino.cc/Code/Keypad

133
© 2019 Exceed Robotics TM

5.4 Practice Questions

Ultrasonic Sensor and LED Practice Code Solution:

#include <NewPing.h>
NewPing mysonar (7, 6, 200);
int mydistance;

void setup()
{
 pinMode (12, OUTPUT);
}

void loop()
{
 mydistance - mysonar.ping_cm();

 if (mydistance < 10)
 {
 digitalWrite(12, HIGH);

Build the code for this circuit, which makes the LED light up if the distance between the

ultrasonic sensor and an object is less than 10cm. If the distance is more than 10cm

then the LED will turn off.

134
© 2019 Exceed Robotics TM

 }

 if (mydistance > 10)
 {
 digitalWrite(12, LOW);
 }

}

PIR Sensor Practice:

PIR Sensor Practice Code:

int sensor = 3;
int indicator = 4;

void setup()
{
 pinMode(sensor, INPUT);
 pinMode(indicator, OUTPUT);
}

void loop()

Create a code using the circuit above. If the sensor senses that there is
movement, then the LED will turn on.

Figure 5-19. Circuit Diagram for an LED and PIR Sensor

135
© 2019 Exceed Robotics TM

{
 int state = digitalRead(sensor); //get valule from PIR sensor

 if (state == 1)
 {
 digitalWrite(indicator, HIGH); //if true, indicator is on
 delay(100);
 }

 else if (state == 0)
 {
 digitalWrite(indicator, LOW); //if false, indicator is off
 delay(100);
 }
}

2) PIR sensor with two indicators.

Create the code for the circuit above. If the sensor senses that

there is movement, then the LED and the buzzer will turn on.

Figure 5-20. Wiring Diagram for an LED, PIR Sensor, and a

Buzzer.

136
© 2019 Exceed Robotics TM

PIR Sensor with two indicators Code:

int sensor = 3;
int indicator = 4;
int buzzer = 5;

void setup() {
 pinMode(sensor, INPUT);
 pinMode(indicator, OUTPUT);
 pinMode(buzzer, OUTPUT);
}

void loop() {
 int state = digitalRead(sensor);
 if (state == 1) {
 digitalWrite(indicator, HIGH);
 tone(buzzer, 300);
 }

 else {
 digitalWrite(indicator, LOW);
 noTone(buzzer);
 }
}

1. Which of these is an example of an output device?
a. Switches
b. Temperature sensors
c. Buzzer

2. What don't we need to know to generate a sound?
a. Pitch
b. Frequency
c. Voltage Level

3. Which animal can hear the largest frequency range?
a. cat
b. bat
c. elephant

4. human can hear frequencies ranging between ____.
a. 0Hz to 20000Hz
b. 20Hz to 20000Hz
c. 20000Hz to 40000Hz

5. Which of these is correct:

137
© 2019 Exceed Robotics TM

a. Elephants can only hear infrasound range
b. Humans can hear infrasound range
c. Dolphin can hear ultrasounds range

6. If the frequency of a signal increases the period will____?
a. decrease
b. increase
c. not change

7. which of these commands is not used to control a buzzer?
a. tone (7, 1000)
b. noTone(7)
c. digitalWrite(7, HIGH)

8. in which frequency range can Arduino generate sound on a buzzer?
a. 20Hz- 2000Hz
b. 20Hz- 20000Hz
c. 0Hz- 20000Hz

TASK BASED

1. Create a circuit using a buzzer. Program it in a way to generate a 2000Hz sound. Monitor
the signal across the buzzer using an oscilloscope.

2. For the circuit below, write a program that makes each pushbutton generate different
sound pitch, for instance 50Hz, 500Hz and 1000Hz.

138
© 2019 Exceed Robotics TM

3. For the circuit in the previous question, add another pushbutton which can stop the
sound of the buzzer.

139
© 2019 Exceed Robotics TM

4. Design a circuit with a buzzer and a RGB LED. Write a program that generate 2 different
sound frequency on the buzzer and displays 3 different colors on the RGB LED.

FIND THE ERROR(TROUBLESHOOT)

In this section, the objective is to find the error in the code snippet and the circuits.
1. Find the problem in circuit below.

2. The following code should generate 3 different sound pitches, but when you run the
code only one frequency can be heard! Can you find the error and fix it?

140
© 2019 Exceed Robotics TM

3. In the following circuit, whenever the button is pushed, the buzzer should generate a
1000Hz sound. But it does not work, can you find the problem and fix it?

141
© 2019 Exceed Robotics TM

Page Break
Class 7: Design Challenge

MULTIPLE CHOICE QUESTIONS

1. Which of these is correct?
a. 2V connected to a digital input is equivalent to 1 (5V)
b. 3V connected to a digital input is equivalent to 3V
c. 4.5V connected to an analog input is equivalent to 4.5V

142
© 2019 Exceed Robotics TM

2. Which of these can generate a 30% duty cycle PWM signal?
a. analogWrite(10, 77)
b. analogWrite(10,130)
c. analogWrite(10, 60)

3. which of these is the circuit symbol of pushbutton?

a.

b.

c.

4. What is the Pull up/pull down resistor functions?
a. limiting the current through the pins
b. limiting the voltage of the pins
c. protecting floating pins

5. RGB LEDs could be programmed as a____.
a. Digital output.

143
© 2019 Exceed Robotics TM

b. Analog output
c. Digital or Analog output

6. What is the function of pinMode() command?
a. Power to digital output
b. Read analog input
c. Define pin

7. Which of these devices is an Output device?
a. Sensors
b. Keyboard
c. LCD

TASK BASED

1. Fill the yellow circles with the voltage of the nearby signals.

2. In the TinkerCAD, implement the circuit and code of the following picture. Using the
resistor values in the table, change the value of the resistor connected to the drain of
MOSFET and complete the table below: (external power supply = 12V)

Resistor Value Gate Current Drain current

1kR

500R

100R

25R

144
© 2019 Exceed Robotics TM

3. Design a circuit with a motor, buzzer and a pushbutton. Write a program which can run
the motor with a 75% duty cycle, and when the pushbutton is pushed, the motor will stop
spinning and the buzzer will generate a 4000Hz sound.

FIND THE ERROR(TROUBLESHOOT)

In this section, the objective is to find the error in the code snippet and the circuits.
1. The following circuit should control an LED and a motor, that is connected to an external
power supply. But it does not work. Can you find the error and fix it?

145
© 2019 Exceed Robotics TM

2. In the following design we need to measure current value through the resistor, but the
value is negative. Can you fine the error and fix it?

3. The following code should generate a PWM signal when a pushbutton (connected to pin
2) is pushed. However, it doesn’t work. Can you find the error and fix it?

146
© 2019 Exceed Robotics TM

147
© 2019 Exceed Robotics TM

CHAPTER 6: WORKING WITH MOTORS

r

148
© 2019 Exceed Robotics TM

6.1 Parts You Will Learn

Now you will learn different types of motors and their functions. As previously mentioned, the

sensors are the inputs of your circuit. The motors will be the outputs of the circuit. Think of the

motors as your arms and legs. When your brain takes an input from the sensors such as eyes,

your brain makes a process and then it outputs this process onto your legs to move forward.

For example, using an ultrasonic sensor, you can take the input of the distance between the

circuit and the obstacle and using a servo motor, you can stop the movement or turn around to

avoid the obstacle. The motors are the outputs of your circuit, so they are as crucial as sensors

or any other part of the Arduino.

6.1.1 Servo Motor

Servo Motor Specifications

Weights: 18g, including the cables

Motor speed: 0.14sec/60degree (4.8V)

Voltage: 4.8V - 6V

Stall Current ≦850mA

Weight 3G

149
© 2019 Exceed Robotics TM

Servo Motor Code Example:

#include <Servo.h>

Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards

int pos = 0; // variable to store the servo position

void setup()
{
 myservo.attach(3); // attaches the servo on pin 3 to the servo object
}

Pin Connection

[red (VCC)] → [+5V]

[black (GND)] → [GND]

[yellow (PWM)] → [3]

Figure 6-1. Servo Motor.

A servomotor is a rotary actuator or linear actuator that allows for precise control of angular

or linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor

for position feedback.

Figure 6-2. Wiring Diagram of a Servo Motor and the Pin Connections on an Arduino.

150
© 2019 Exceed Robotics TM

void loop()
{
 for (pos = 0; pos <= 180; pos += 1)
 {
 // goes from 0 degrees to 180 degrees
 // in steps of 1 degree
 myservo.write(pos);
 // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }

 for (pos = 180; pos >= 0; pos -= 1)
 {
 // goes from 180 degrees to 0 degrees
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

6.1.2 DC Motor

DC Motor Specifications

Rated Voltage: 6V DC

No load speed: 12000±15%rpm

No load current: ≤280mA

Stall Current 500mA

Operating voltage: 1.5-6.5V DC

Figure 6-3. DC Motor.

151
© 2019 Exceed Robotics TM

6.1.2.1 Controlling DC Motors Method 1: Transistor

Transistor Other
Emitter − Motor

Base 3

(Arduino)

Collector GND

(Arduino)

Motor Other
− Motor Emitter

(Transistor)

+ Motor 5V (Arduino)

A DC motor is any of a class of rotary electrical machines that converts direct current

electrical energy into mechanical energy. The most common types rely on the forces

produced by magnetic fields. Nearly all types of DC motors have some internal mechanism,

either electromechanical or electronic, to periodically change the direction of current flow in

part of the motor.

152
© 2019 Exceed Robotics TM

DC Motor Code Example:

void setup(){

 pinMode(3, OUTPUT); //Set pin 3 as output (Connected to negative end of motor)

}

void loop(){

 analogWrite(3, 55); //Spin the motor slowly

 delay(1000);

 analogWrite(3, 105); //Speed motor up

 delay(1000);

 analogWrite(3, 155); //Speed motor up

 delay(1000);

 analogWrite(3, 205); //Speed motor up

 delay(1000)l

 analogWrite(3, 255); //Speed motor up

 delay(1000);

}

of motors able to control 1

Speed Control (PWM): Yes

Rotational Direction Control: No

Max current (A) 0.5A

Operating Voltage 3V - 20V

153
© 2019 Exceed Robotics TM

6.1.2.2 Controlling DC Motors method 2: L293D Chip

The L293D is a 16 pin IC chip that can control up to 2 DC motors independently at once. The L293D chip works by

taking input signals from the Arduino and outputting correlating signals to the DC motor (s). This chip can allow

you to manipulate DC motors in many different ways, some of which include, making a DC motor spin clockwise

and counterclockwise and controlling the speed of a DC motor.

L293D Chip Other
Enable 1,2 11 (Arduino)

Input 1 10 (Arduino)

Output 1 + (Motor 2)

GND GND

Output 2 − (Motor 2)

Input 2 9 (Arduino)

VCC 2 +

VCC 1 +

Input 4 3 (Arduino)

Output 4 − (Motor 1)

GND GND

Output 3 + (Motor 1)

Input 3 4 (Arduino)

Enable 3,4 5 (Arduino)

154
© 2019 Exceed Robotics TM

L293D Motor Code Example:

void setup() {

 pinMode(3,OUTPUT); //set pin 3 as output (connected to input 4 on L293D chip)

 pinMode(4, OUTPUT);//set pin 4 as output (connected to input 3 on L293D chip)

 pinMode(5, OUTPUT);//set pin 5 as output (connected to enable 3,4 on L293D

chip)

 pinMode(9, OUTPUT);//set pin 9 as output (connected to input 2 on L293D chip)

 pinMode(10, OUTPUT);//set pin 10 as output (connected to input 1 on L293D chip)

 pinMode(11, OUTPUT);//set pin 5 as output (connected to enable 1, 2 on L293D)

}

void loop() {

 //following code uses PWM to spin motor at full speed and gradually slow down

 digitalWrite(3,HIGH); //spin first motor in one direction

 digitalWrite(4,LOW);

 analogWrite(5,255); //spin first motor at full speed

 delay(1000);

 analogWrite(3,180); //slow first motor down

 delay(1000);

 analogWrite(4,128); //slow first motor down

 delay(100);

 analogWrite(5, 50); //slow fist motor down

 delay(100);

 analogWrite(5,20); //slow first motor down

 digitalWrite(9,HIGH); //spin second motor one direction

155
© 2019 Exceed Robotics TM

 digitalWrite(10,LOW);

 analogWrite(11,255); //spin second motor at full speed

 delay(1000);

 analogWrite(9,180); //slow second motor down

 delay(1000);

 analogWrite(10,128); //slow second motor down

 delay(100);

 analogWrite(11, 50); //slow second motor down

 delay(100);

 analogWrite(11,20); //slow second motor down

}

of motors able to control 2

Speed Control (PWM): Yes

Rotational Direction Control: Yes

Max current (A) 0.6A

Operating Voltage 4.5V-36V

6.1.2.3 Controlling DC Motors method 3: L298N Driver

The L298N driver is a motor driver that can control up to 2 DC motors simultaneously. The driver can

use H-Bridge to control the rotational direction or PWM to control the speeds of the 2 DC motors.

156
© 2019 Exceed Robotics TM

157
© 2019 Exceed Robotics TM

L298N Driver Other

GND GND

(Arduino)

5V 5V (Arduino)

ENA 6 (Arduino)

IN1 2 (Arduino)

IN2 3 (Arduino)

IN3 4 (Arduino)

IN4 5 (Arduino)

ENB 9(Arduino)

+ Motor A + Motor 1

− Motor A − Motor 1

+ Motor B + Motor 2

− Motor B − Motor 2

158
© 2019 Exceed Robotics TM

L298N Motor Code Example:

void setup() {

 pinMode(2, OUTPUT); //Set pin 2 as output (connected to IN1 on L298N)

 pinMode(3, OUTPUT); //Set pin 3 as output (connected to IN2 on L298N)

 pinMode(4, OUTPUT); //Set pin 4 as output (connected to IN3 on L298N)

 pinMode(5, OUTPUT); //Set pin 5 as output (connected to IN4 on L298N)

 pinMode(6, OUTPUT); //Set pin 6 as output (connected to ENA on L298N)

 pinMode(9, OUTPUT); //Set pin 9 as output (connected to ENB on L298N)

}

void loop() {

 digitalWrite(2, HIGH); //Make first motor spin in one direction

 analogWrite(6, 55); //Spin motor slowly

 delay(1000);

 analogWrite(6, 105); //Speed motor up

 delay(1000);

 analogWrite(6, 155); //Speed motor up

 delay(1000);

 analogWrite(6, 205); //Speed motor up

 delay(1000);

 analogWrite(6, 255); //Speed motor up

 delay(1000);

 digitalWrite(2, LOW); //Stop first motor from spinning

 digitalWrite(4, HIGH); //Make second motor spin in one direction

159
© 2019 Exceed Robotics TM

 analogWrite(9, 55); //Speed motor up

 delay(1000);

 analogWrite(9, 105); //Speed motor up

 delay(1000);

 analogWrite(9, 155); //Speed motor up

 delay(1000);

 analogWrite(9, 205); //Speed motor up

 delay(1000);

 analogWrite(9, 255); //Speed motor up

 delay(1000);

 digitalWrite(4, LOW); //Stop second motor from spinning

 }

of DC motors able to control 2

Speed Control (PWM): Yes

Rotational Direction Control: Yes

Max Current (A) 2A

Operating Voltage 5V-35V

160
© 2019 Exceed Robotics TM

 6.1.2.4 Controlling DC Motors Method 3: Arduino

Motor Shield

Note: Arduino Motor shields are modular circuit boards that you can attach on top

of an Arduino board to add additional functionality.

Figure 7-5. Arduino Motor Shield.

161
© 2019 Exceed Robotics TM

Motor Shield Other

A+ + Motor 1

 A − − Motor 1

B+ + Motor 2

 B − − Motor 2

+ + External

Power Supply

 − − External

power supply

The Arduino motor Shield is a dual full-bridge driver designed to drive inductive loads such as relays,

DC and stepping motors. It lets you drive two DC motor with your Arduino, controlling the speed and

direction of the vehicle. The shield is also TinkerKit compatible, meaning that you can quickly create

projects by plugging TinkerKit modules to the board.

162
© 2019 Exceed Robotics TM

Motor Shield Code Example:

void setup()

{

 pinMode(12, OUTPUT); //Set pin 12 as output

 pinMode(13, OUTPUT); //Set pin 11 as output

}

void loop()

{

 digitalWrite(12,HIGH);//Spin first motor in one direction

 analogWrite(3, 55); //Spin first motor slowly

 delay(1000);

 analogWrite(3,105); //Spin first motor slowly

 delay(1000);

 analogWrite(3, 155); //Speed up first motor

 delay(1000);

 analogWrite(3, 205); //Speed up first motor

 delay(1000);

 analogWrite(3, 255); //Speed up first motor

 delay(1000);

 digitalWrite(13, HIGH); // Spin second motor in one direction

 analogWrite(11, 55); //Spin second motor slowly

 delay(1000);

 analogWrite(11,105); //Speed up second motor

 delay(1000);

163
© 2019 Exceed Robotics TM

 analogWrite(11, 155); //Speed up second motor

 delay(1000);

 analogWrite(11, 205); //Speed up second motor

 delay(1000);

 analogWrite(11, 255); //Speed up second motor

}

Of DC motors able to control 2

Speed Control (PWM): Yes

Rotational Direction Control: Yes

Max Current (A) 4A (2A per channel)

Operating Voltage 7V - 18V

6.1.3 Stepper Motor

164
© 2019 Exceed Robotics TM

Stepper Motor Arduino

STEP 8,9,10,11

VCC 5V

GND GND

Stepper Motor Code Example:

#include <Stepper.h> // Include the Stepper library
#define STEPS 100 // Define STEPS

Stepper stepper(STEPS, 8, 9, 10, 11); // Set pins 8,9,10,11,STEPS as
//stepper
int previous = 0;

Figure 6-5. Stepper Motors.

A stepper motor (step motor or stepping motor) is a brushless DC electric motor that

divides a full rotation into some equal steps. The motor's position can then be commanded

to move and hold at one of these steps without any position sensor for feedback, if the

motor is carefully sized to the application in respect to torque and speed.

Typically, a motor controller is required to control the pulse rate to the stepper (as

demonstrated in the diagram below).

.

Figure 6-6. Stepper Motor wiring diagram and Pin connections for the diagram.

165
© 2019 Exceed Robotics TM

void setup()
{
 stepper.setSpeed(90); // Set stepper speed as 90
}

void loop()
{
 int val = analogRead(0);
 stepper.step(val - previous);
 previous = val;
}

STEPPER Motor Code Example:

#include <Stepper.h> // Include the header file

#define STEPS 32

Stepper stepper(STEPS, 2, 3);
int val = 0; // Set val as 0

void setup()

Stepper Motor Arduino

DIR (red) 2

 STEP (green) 3

GND (black) GND

Figure 6-7. Another Version of a Stepper Motor wiring diagram and Pin

connections for the diagram.

166
© 2019 Exceed Robotics TM

{
 Serial.begin(9600);
 stepper.setSpeed(200); // Speed of the stepper is 200
}

void loop()
{
 if (Serial.available() > 0)
 {
 val = Serial.parseInt();
 stepper.step(val);
 Serial.println(val); //for debugging
 }
}

6.2 Servo Library

Servo Library allows an Arduino board to control servo motors. Servos have integrated gears,

and shafts that can be precisely controlled The shaft is positioned at various angles, usually

between 0 and 180 degrees.

Library name:

#include <Servo.h>

Figure 6-8. Functions apart of the Servo Library and what they can do.

167
© 2019 Exceed Robotics TM

Declaration:

Servo myServo;

Functions:

attach(pinNumber);

detach(pinNumber);

write(angle);

read();

If you need more information or you still have questions, you can visit the link below:

Reference: https://www.arduino.cc/en/Reference/Servo

Fun Fact: Servomotors are used in applications such as robotics, CNC machinery or

automated manufacturing.

6.3 Practice Examples

1) Servo Motor Movement

Servo Motor Practice Example

https://www.arduino.cc/en/Reference/Servo

168
© 2019 Exceed Robotics TM

Servo Motor Movement Example Code:

#include <Servo.h>

Servo myservo;
Servo servo_9;

void setup()
{
 myservo.attach(9); //Attach servo to the pin 9
}

void loop()
{
 myservo.write(0); //Set the angle of the servo to 0
 delay(1000); //Wait 1 second
 myservo.write(45); //Set the angle of the servo to 45
 delay(1000); //Wait 1 second
 myservo.write(90); //Set the angle of the servo to 90
 delay(1000); //Wait 1 second
 myservo.write(135); //Set the angle of the servo to 135
 delay(1000); //Wait 1 second
 myservo.write(180); //Set the angle of the servo to 180
 delay(1000); //Wait 1 second
}

2) Control Servo Motor with Potentiometer

Figure 6-9. Servo Motor wiring diagram.

169
© 2019 Exceed Robotics TM

Servo Motor Movement Example Code:

#include <Servo.h>

int potentiometer = 0;
int val;

Servo myservo;

void setup()
{
 myservo.attach(10);
}

void loop()
{
 val = analogRead(potentiometer); //read from potentiometer
 val = map(val, 0, 1023, 180, 0); //convert the value to 180-based
 myservo.write(val); //control servo motor
}

6.4 Homework Questions

Q.1) Servo motor with a temperature sensor

Figure 6-10. Servo Motor wiring diagram with a Potentiometer attached as well.

Build a code in which servo motor

moves as temperature increases.

HINT: map() function will be required to

convert the temperature value to the

angle value.

Figure 6-11. Servo Motor wiring diagram with a temperature sensor attached as well.

170
© 2019 Exceed Robotics TM

Q. 2) Servo motor controlled by two push buttons

1. The resistor cannot be used as a_____?
i. Pull down/up to protect floating pins
j. Current limiter through LED
k. Voltage source

2. Arduino behaves as a _____When it comes to measuring the input signal?
a. Switch
b. Voltage Regulator
c. Multimeter

3. Which of these can only be monitored by analog input of Arduino?
a. Temperature sensor
b. Switches
c. PIR sensor

4. Which of these is not correct:
a. 2.6V is equivalent to 1 in digital signals.
b. 2.6V is equivalent to 1 in analog signals
c. 2.6V is equivalent to 2.6V in analog signals

5. What is the voltage level of analog signals in Arduino?
a. 0V-3.3V
b. 0V-5V

Build the code which servo

motor changes its angle by +

or – 20 degrees when the

button is pressed. Left one

should be negative, and the

right one should be positive.

Figure 6-12. Servo Motor wiring diagram controlled by 2 push buttons.

171
© 2019 Exceed Robotics TM

c. 0V-12V
6. Which of these is not correct about analog signals in Arduino?

a. The analog value measured by Arduino converts to 0 to 1/10123.
b. In the analogWrite() command, the values can range from 0 to 255.
c. The analog value measured by Arduino converts to 0 to 1023

7. The PWM pins can be used as_____.
a. Digital input pins
b. Analog output pins
c. Power pins

8. Which of these PWM signals provide more power to a motor?

a.

b.

c.

9. Which of these defines the duty cycle?

a. On and off time of the signal
b. Voltage level
c. Current amount

10. The transistors cannot be used for:
a. Amplify electrical power
b. Switch electronic signals

172
© 2019 Exceed Robotics TM

c. Regulating voltage

TASK BASED

1. Explain why the motor cannot be driven directly using Arduino pins. What could be the
solution to this problem?

2. In the TinkerCAD, connect a DC motor to a 5V power supply and write down the current
consumption of the motor. Swap the +5V and 0V connections and report your
observations.

3. Design a circuit that can appropriately drive a DC motor by an Arduino.

4. For the circuit below, we need to control the speed of the motor. Write a program that
sets the analog output to 50 when the right push button is pushed, sets analog out to 0
when middle button is pushed, and sets analog out to 255 when the left button is pushed.

173
© 2019 Exceed Robotics TM

FIND THE ERROR(TROUBLESHOOT)

In this section, the objective is to find the error in the code snippet and the circuits.
1. For the given voltage and resistance, the current is calculated. Is it correct? If not, what
is the correct current?

Resistor Current Voltage

2.2K 2 A 5V

2. As it can be seen in the picture below, we are trying to measure the current flow
through the motor, but the multimeter is not displaying the correct value. Can you find the
problem? How can this be solved?

Page Break

174
© 2019 Exceed Robotics TM

CHAPTER 7: Display Modules

175
© 2019 Exceed Robotics TM

7.1 LCD Shield

This LCD Arduino shield has

five keys — select, up, right,

down and left which allow you

move through menus and

make selections straight from

one board attached to your

Arduino project without

requiring a massive tower of

shields.

This design allows you to keep

connecting sensors to the rest

of the pins and use it for monitoring or menu selection with the push buttons even for gaming.

If you need more information or you still have questions, you can visit the link below:
Reference: https://www.dfrobot.com/product-51.html

Includes a 2x16 LCD and six momentary push buttons. Pins 4, 5, 6, 7, 8, 9 and ten are

used to interface with the LCD. Just one Analog Pin 0 is used to read the five pushbuttons.

The LCD shield supports contrast adjustment and back-lit on/off functions. It also exposes

five analog pins with DFRobot colour code for easy analog sensor plugging and display.

The onboard LED indicates power on.

https://wiki.keyestudio.com/Ks0256_keyestudio_LCD1602_Expansion_Shield

Remaining unused

digital pin

connections

6 push buttons

16x2 LCD screen

176
© 2019 Exceed Robotics TM

7.2 LCD Library

LCD Library Information

Library name:

#include <LiquidCrystal.h>

Declaration:

LiquidCrystal lcd(8,9,4,5,6,7);

Functions:

begin(x,y);

setCursor(x,y);

print(data);

clear();

If you need more information or you still have questions, you can visit the link below:

Reference: https://www.arduino.cc/en/Reference/LiquidCrystal

https://www.arduino.cc/en/Reference/LiquidCrystal

177
© 2019 Exceed Robotics TM

7.3 Practice Question

Solution Code:

#include <LiquidCrystal.h>

LiquidCrystal mylcd(8, 9, 4, 5, 6, 7);

void setup()
{
 mylcd.begin(16, 2);
}

void loop()
{
 mylcd.setCursor(3, 0);
 mylcd.print("I LEARNT");
 mylcd.setCursor(6, 1);
 mylcd.print("LCD");
 delay(1000);
 mylcd.clear();
 delay(1000);
}

Blinking LCD Practice Example

Figure 7-6. The Arduino LCD Shield wiring diagram.

178
© 2019 Exceed Robotics TM

7.4 Homework Question

Solution Code:

#include<NewTone.h>
#include <LiquidCrystal.h>

LiquidCrystal myLCD (8, 9, 4, 5, 6, 7);

int cm = 0;

Q.1. [Challenge]

1) Build this circuit as shown below.

2) Write the code that displays the distance between the sensor and a detected object in

centimeters. The LED turns on to display “Close” when the distance between the sensor and

an object is less than 40cm. When the object is less than 25cm away, The Buzzer works on

500hz and the LCD displays “Too Close”.

179
© 2019 Exceed Robotics TM

int LED = 11;
int Buzzer = 12;

long readUltrasonicDistance(int triggerPin, int echoPin)
{
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in
 //microseconds
 return pulseIn(echoPin, HIGH);
}

void setup()
{
 myLCD.begin(16, 2);
 pinMode(LED, OUTPUT);
 pinMode(Buzzer, OUTPUT);
}

void loop()
{
 cm = 0.01723 * readUltrasonicDistance(10, 10);
 myLCD.setCursor(0, 0);
 myLCD.print(cm);
 myLCD.print("cm");

 if (cm < 40)
 {
 digitalWrite(LED, HIGH);
 myLCD.setCursor(0, 1);

 else if (cm < 25)
 {
 tone(Buzzer, 500);
 myLCD.print("Too Close");
 }

 else
 {
 myLCD.print("Close");

180
© 2019 Exceed Robotics TM

 }
 }
 delay(1000);
 myLCD.clear();
 noTone(Buzzer);
}

7.5 I2C LCD

The I2C LCD is a simplified, easy-to-use module for displaying information. The I2C only has 4 pins, VCC, GND,

SDA and SCL. Note: To use this module, the LiquidCrystal_I2C.h library will need to be downloaded and added

to the Arduino IDE.

I2C LCD Arduino
GND GND

VCC 5V

SDA SDA

SCL SCL

181
© 2019 Exceed Robotics TM

I2C LCD Code Example:

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27,16,2); //set the LCD address to 0x27 (16 chars, 2
lines)

void setup(){

lcd.init(); // initialize the lcd

lcd.backlight(); //turn backlight on

lcd.setCursor(1,0); //Set cursor to starting position on line 1

lcd.print("hello, ");

lcd.setCursor(1,1); //Set cursor to starting position on line 2

lcd.print("world!");

}

void loop(){

}

182
© 2019 Exceed Robotics TM

7.6 8X8 Dot Matrix

The 8x8 dot matrix is a display system that allows you to control up to 46 LEDs. Normally, to control that many

LEDs at once with an Arduino, you will need to use a lot of pins. Thankfully, the 8x8 dot matrix allows us to do with

only using 4 or 5 pins. NOTE: To use this module, the LedControl library will need to be downloaded and added to

the Arduino IDE.

Example of how the rows and columns are numbered:

183
© 2019 Exceed Robotics TM

4 Pin Module Example:

5 pin Module Example:

Dot

Matrix

Arduino

VCC 5V

GND GND

SDA A4

SCL A5

Dot

Matrix

Arduino

VCC 5V

GND GND

DIN 12

CS 11

CLK 10

184
© 2019 Exceed Robotics TM

Dot Matrix 5 pin Code Example:

#include "LedControl.h"

LedControl lc =LedControl(12,10,11);

void setup() {

 lc.shutdown(0,false); //Turn on the Dot matrix

 lc.setIntensity(0,8); //set brightness to 8

 lc.clearDisplay(0); //clear the dot matrix display

}

void printLetter(byte arr[]){ //function to print out the letters onto the dot
matrix

 for(int i =0; i < 8; i++){

 lc.setRow(0,0,arr[0]); //print the letter array of 0

 lc.setRow(0,1,arr[1]); //print the letter array of 1

 lc.setRow(0,2,arr[2]); //print the letter array of 2

 lc.setRow(0,3,arr[3]); //print the letter array of 3

 lc.setRow(0,4,arr[4]); //print the letter array of 4

 lc.setRow(0,5,arr[5]); //print the letter array of 5

 lc.setRow(0,6,arr[6]); //print the letter array of 6

 lc.setRow(0,7,arr[7]); //print the letter array of 7

 }

}

185
© 2019 Exceed Robotics TM

void loop() {

 //NOTE: 1 = true, 0 = False

 byte H[]
{B00000000,B00100100,B00100100,B00111100,B00100100,B00100100,B00100100,B00000000}
; //set byte values for the letter "H"

 byte E[] =

{B00000000,B00111100,B00100000,B00111000,B00100000,B00100000,B00111100,B00000000}
; //set byte values for the letter "E"

 byte L[] =

{B00000000,B00100000,B00100000,B00100000,B00100000,B00100000,B00111100,B00000000}
; //set byte values for the letter "L"

 byte O[] =

{B00000000,B00111100,B01000010,B01000010,B01000010,B01000010,B00111100,B00000000}
; //set byte values for the letter "O"

 byte W[] =

{B00000000,B10000010,B10010010,B01010100,B01010100,B00101000,B00000000,B00000000}
; //set byte values for the letter "W"

 byte R[] =

{B00000000,B00111000,B00100100,B00100100,B00111000,B00100100,B00100100,B00000000}
; //set byte values for the letter "R"

 byte D[] =

{B00000000,B00111000,B00100100,B00100010,B00100010,B00100100,B00111000,B00000000}
; //set byte values for the letter "D"

 printLetter(H); //call printLetter function with the array for the letter H

 delay(1000);

 printLetter(E); //call printLetter function with the array for the letter E

 delay(1000);

 printLetter(L); //call printLetter function with the array for the letter L

 delay(1000);

 printLetter(L); //call printLetter function with the array for the letter L

 delay(1000);

 printLetter(O); //call printLetter function with the array for the letter O

186
© 2019 Exceed Robotics TM

 delay(1000);

 printLetter(W); //call printLetter function with the array for the letter W

 delay(1000);

 printLetter(O); //call printLetter function with the array for the letter O

 delay(1000);

 printLetter(R); //call printLetter function with the array for the letter R

 delay(1000);

 printLetter(L); //call printLetter function with the array for the letter L

 delay(1000);

 printLetter(D); //call printLetter function with the array for the letter D

 delay(1000);

}

187
© 2019 Exceed Robotics TM

Dot Matrix 5 pin Code Example:

#include <Wire.h>

#include "Adafruit_LEDBackpack.h"

#include "Adafruit_GFX.h"

#ifndef _BV

#define _BV(bit) (1<<(bit))

#endif

Adafruit_LEDBackpack matrix = Adafruit_LEDBackpack();

uint8_t counter = 0;

void setup() {

 Serial.begin(9600);

 Serial.println("HT16K33 test");

 matrix.begin(0x70); // pass in the address

}

void loop() {

 // paint one LED per row. The HT16K33 internal memory looks like

 // a 8x16 bit matrix (8 rows, 16 columns)

 for (uint8_t i=0; i<8; i++) {

// draw a diagonal row of pixels

 matrix.displaybuffer[i] = _BV((counter+i) % 16) | _BV((counter+i+8) % 16) ;

 }

 // write the changes we just made to the display

 matrix.writeDisplay();

 delay(100);

 counter++;

 if (counter >= 16) counter = 0;

}

188
© 2019 Exceed Robotics TM

CHAPTER 8: WIRELESS COMMUNICATION

189
© 2019 Exceed Robotics TM

8.1 HM-10 Bluetooth Module

The HM-10 Bluetooth module is an Arduino compatible module, that allows users to add Bluetooth functionality

to their Arduino projects. NOTE: you will need to download/use an external app that allows you to

connect/send data to the module.

HM-10 Arduino
VCC 5V

GND GND

TX RX

RX TX

190
© 2019 Exceed Robotics TM

HM-10 Code Example:

void setup(){

 Serial.begin(9600); //begin the serial monitor

 pinMode(13 ,OUTPUT); //set pin 13 as output

}

void loop(){

 int val = Serial.read(); //set the val variable to what was read in the serial
monitor

 if(val=='a'){ //if the value read = a, run the code

 digitalWrite(13,HIGH); //turn on the on board LED

 delay(1000);

 digitalWrite(13,LOW); //turn off the on board LED

 delay(1000);

 Serial.println("Hello, World!"); //print “Hello, World!” to serial

 }

}

191
© 2019 Exceed Robotics TM

8.2 IR Remote and Receiver

The IR remote and receiver allows users to add infrared functionality to their Arduino projects. Infrared is a form

of wireless communication that can be used to control/send signals to various electronic components. Note: the

IRremote.h library will need to be downloaded and added to the Arduino IDE.

IR

Receiver

Arduino

- GND

+ 5V

S 11

192
© 2019 Exceed Robotics TM

IR Remote and Receiver Code Example:

#include <IRremote.h>

int receiverPin = 11; //Input pin on Arduino Board

IRrecv irrecv(receiverPin); //Create a receiver object

decode_results results; //Create a decoded results object

void setup() {

 Serial.begin(9600); //Begin the Serial Monitor

 irrecv.enableIRIn(); // Start the receiver

}

void loop() {

 if (irrecv.decode(&results)) { //Run if data was found through the receiver

 Serial.println(results.value); //Print the results value to serial

 irrecv.resume(); // Receive the next value found by the receiver

 }

}

193
© 2019 Exceed Robotics TM

8.3 RF Transceiver (NRF2L401):

The NRF2L401 module is a wireless PC Data Transmission module, that allows users to implement bidirectional

data transmission between two Arduino boards. One module will act as the transmitter and the other one will

act as a receiver. When wiring, remember that the RF modules only take 3.3v, and if you have an adapter, it can

take 5v. Note the RF24.h library will need to be added to the Arduino IDE.

Receiver Diagram:

NRF2L401 Arduino
GND GND

3.3V 3.3V

CE 7

CSN 8

SCK 13

MOSI 11

MISO 12

194
© 2019 Exceed Robotics TM

Transmitter diagram:

Receiver Code Example:

//Sketch > Include Library > Add .ZIP Library

//Include SPI (Serial Peripheral Interface)

#include <SPI.h>

//Include Radio Frequency

#include <RF24.h>

//Include Servo

#include <Servo.h>

//Define DC motor ports --> these, you can calibrate at will if they are not going in the

right direction. If so, just switch the ports, and by doing so, it switches the

direction.

#define leftB A1 //left backward

#define leftF A2 //left forward

#define rightF 2 //right forward

NRF2L401 Arduino
GND GND

5V 5V

CE 7

CSN 8

SCK 13

MOSI 11

MISO 12

195
© 2019 Exceed Robotics TM

#define rightB 4 //right backward

//Define DC PWM pins --> controls speed using pwm (digital pins with pwm capabilities)

#define ENL 5

#define ENR 6

//Define Button (could be digital pin but no digital pins remaining)

#define button A5

RF24 radio2(7, 8); //Define radio module. "radio2" is the name

byte addresses[][6] = {"0"}; //Set address [6]--> Must be same as transmitter

/* Define package data --> What will be received

 ML --> move left wheels with left joystick

 MR --> move right wheels with right joystic

 AM --> arm move with button

*/

struct package{

 int ML = 0;

 int MR = 0;

 int AM = 0;

};

//Define structure type

typedef struct package Package;

Package data;

//Define Servo

Servo servo;

void setup(){

196
© 2019 Exceed Robotics TM

 //Set DC motor pin modes

 pinMode(leftF, OUTPUT);

 pinMode(leftB, OUTPUT);

 pinMode(rightF, OUTPUT);

 pinMode(rightB, OUTPUT);

 pinMode(ENL, OUTPUT);

 pinMode(ENR, OUTPUT);

 //Set DC motor so it is stopped by default

 analogWrite(ENL, 0);

 analogWrite(ENR, 0);

 digitalWrite(leftF, LOW);

 digitalWrite(leftB, LOW);

 digitalWrite(rightF, LOW);

 digitalWrite(rightB, LOW);

 //Set button input

 pinMode(button, INPUT);

 //Setup servo

 servo.attach(3);

 servo.write(0); //set default angle to 0

 //Serial Monitor for debugging purposes

 Serial.begin(115200);

 radio2.begin(); //Start radio

 //CHANGE VALUE BELOW FOR DIFFERENT ROBOTS, SAME VALUE BOTH RECEIVER AND TRANSMITTER

 radio2.startListening(); //Start to listen for a package

197
© 2019 Exceed Robotics TM

 Serial.println("Receiving packages"); //debug

 delay(1000); //not necessary, but adds delay between setup and the loop

}

void loop(){

 //Only executes code if the radio is on

 if (radio2.available()){

 while (radio2.available()){

 radio2.read(&data, sizeof(data)); //Read the data that is send through the pipe.

 }

 //Prints received data in monitor

 Serial.println(data.ML);

 Serial.println(data.MR);

 Serial.println(data.AM);

 Serial.println();

 //Servo control

 servo.write(data.AM);

 //Controls for the left wheels

 if (data.ML >= 10){ //joystick pushed up

 digitalWrite(leftF, HIGH);

 digitalWrite(leftB, LOW);

 analogWrite(ENL, data.ML);

 Serial.println("Forward Left"); //debug (not necessary for final product)

 }

198
© 2019 Exceed Robotics TM

 else if (data.ML <= -10){ //joystick down

 digitalWrite(leftF, LOW);

 digitalWrite(leftB, HIGH);

 analogWrite(ENL, -data.ML);

 Serial.println("Backward Left"); //debug

 }

 else if (10 >= data.ML >= -10){ //deadzone

 analogWrite(ENL, 0);

 }

 //Controls for the right wheels

 if (data.MR >= 10){ //right joystick up

 digitalWrite(rightF, HIGH);

 digitalWrite(rightB, LOW);

 analogWrite(ENR, data.MR);

 Serial.println("Forward Right"); //debug

 }

 else if (data.MR <= -10){ //joystick down

 digitalWrite(rightF, LOW);

 digitalWrite(rightB, HIGH);

 analogWrite(ENR, -data.MR);

 Serial.println("Backward Right"); //debug

 }

 else if (10 >= data.MR >= -10){ //deadzone

 analogWrite(ENR, 0);

 }

199
© 2019 Exceed Robotics TM

 if (digitalRead(button) == LOW){

 analogWrite(ENL, 0);

 analogWrite(ENR, 0);

 delay(2000);

 while (digitalRead(button) == HIGH){

 //While loop --> serial print for debug

 Serial.println("dead");

 }

 delay(500);

 }

 }

}

Transmitter Code Example:

#include <SPI.h>

#include <RF24.h>

RF24 radio1(7, 8); //Define radio module. "radio1" is the name

byte addresses[][6] = {"0"}; //Set address [0]--> Must be same as receiver

/*Define package data --> What will be sent

 ML --> move left

 MR --> move right

 AM --> arm move

*/

200
© 2019 Exceed Robotics TM

struct package{

 int ML = 0;

 int MR = 0;

 int AM = 0;

};

//Define structure type

typedef struct package Package;

Package data;

void setup(){

 //Serial Monitor for debugging purposes

 Serial.begin(115200);

 radio1.begin(); //Start radio

 //CHANGE VALUE BELOW FOR DIFFERENT ROBOTS, SAME VALUE BOTH RECEIVER AND
TRANSMITTER

 radio1.setChannel(115); //Set Channel --> Must also be same as transmitter, and

when having two different sets of modules, you must have these as different

channels from 0-125

 //These settings are not as important as the others. It is recommended to have
it the same as this for optimal use.

 //Reference manual can be found here:

https://maniacbug.github.io/RF24/classRF24.html

 radio1.setPALevel(RF24_PA_MAX); //Set power amplifier (PA) level --> from

levels 1-4, 4 being the max

 radio1.setDataRate(RF24_250KBPS); //Set data rate

 //These settings will be different from the bot, because this program will be
SENDING the data.

201
© 2019 Exceed Robotics TM

 radio1.openWritingPipe(addresses[0]); //Open WRITING pipe on address [0] -->

Must be same as transmitter

 radio1.stopListening(); //Doesn't need to listen, because it is the transmitter

 Serial.println("Sending packages"); //debug

 delay(1000); //not necessary, but adds delay between setup and the loop

}

void loop()

{

 //Write and send data

 radio1.write(&data, sizeof(data));

 //Print data in monitor

 Serial.println(data.ML);

 Serial.println(data.MR);

 Serial.println(data.AM);

 Serial.println();

 //Map joysticks between -255 to 255 --> the purpose of this is to determine

whether the wheels go forward or backwards

 data.ML = map(analogRead(A1), 0, 1023, -255, 255);

 data.MR = map(analogRead(A2), 0, 1023, -255, 255);

 //Right joystick button --> reads as HIGH or LOW

 if (digitalRead(A3) == HIGH){

 data.AM = 125; //When button is pressed, send the angle of the servo to the

bot

 }

202
© 2019 Exceed Robotics TM

else {

 data.AM = 0; //else, set it to 0 degrees

 }

 delay(5); //also not necessary, but just makes serial monitor go a bit slower

203
© 2019 Exceed Robotics TM

CHAPTER 9: ADDITIONAL ARDUINO HARDWARE

204
© 2019 Exceed Robotics TM

9.1 Parts You Will Learn

Now that you have learned some of the basics about sensors, motors and shields, you can

learn some of the additional hardware that Arduino has to offer that you can use to create

projects with.

9.1.1 DS 1307 RTC Module Pinout

Figure 8-1. The RTC Module Pinout diagram.

RTC Module or Real Time clock, enables you to track time anywhere you go. The module is

aware of the time around them. This module comes in handy when you come across the

idea where you need to track time. It’s perfect for projects containing data-logging, clock-

building, time stamping, timers, alarms etc.

Pin Connections

[SCL] → [ICSP2]

[SDA] → [ICSP]

[VCC] → [5V]

[GND] → [DNG]

205
© 2019 Exceed Robotics TM

RTC Module Sample Code:

#include <Wire.h>
#include <RTClib.h>

RTC_DS1307 rtc;
char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

void setup ()
{
 Serial.begin(9600);
 delay(3000); // wait for console opening
 if (! rtc.begin())
 {
 Serial.println("Couldn't find RTC");
 while (1);
 }

 if (!rtc.isrunning())
 {
 Serial.println("RTC lost power, lets set the time!");
 // Comment out below lines once you set the date & time.
 // Following line sets the RTC to the date & time this sketch was
 // compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // Following line sets the RTC with an explicit date & time
 // for example, to set January 27 2017 at 12:56 you would call:
 // rtc.adjust(DateTime(2017, 1, 27, 12, 56, 0));
 }
}

void loop ()
{
 DateTime now = rtc.now();
 Serial.println("Current Date & Time: ");
 Serial.print(now.year(), DEC);
 Serial.print('/');
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print(" (");
 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
 Serial.print(") ");
 Serial.print(now.hour(), DEC);
 Serial.print(':');

206
© 2019 Exceed Robotics TM

 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();
 Serial.println("Unix Time: ");
 Serial.print("elapsed ");
 Serial.print(now.unixtime());
 Serial.print(" seconds/");
 Serial.print(now.unixtime() / 86400L);
 Serial.println(" days since 1/1/1970");

 // calculate a date which is 7 days & 30 seconds into the future
 DateTime future (now + TimeSpan(7,0,0,30));
 Serial.println("Future Date & Time (Now + 7days & 30s): ");
 Serial.print(future.year(), DEC);
 Serial.print('/');
 Serial.print(future.month(), DEC);
 Serial.print('/');
 Serial.print(future.day(), DEC);
 Serial.print(' ');
 Serial.print(future.hour(), DEC);
 Serial.print(':');
 Serial.print(future.minute(), DEC);
 Serial.print(':');
 Serial.print(future.second(), DEC);
 Serial.println();
 Serial.println();
 delay(1000);
}

207
© 2019 Exceed Robotics TM

9.1.2 RELAY

DC Motor Specifications

Type: Digital

Rated current: 10A (NO) 5A (NC)

Maximum switching

voltage:
150VAC 24VDC

Contact action time: 10ms

Size: 40*28mm

Weight: 15g

Figure 8-3. The Relay.

A relay is an electrically operated switch. Many relays use an electromagnet to manage a

switch mechanically, but other operating principles are also applied, such as solid-state

relays. Relays are used where it is necessary to control a circuit by a separate low-power

signal, or where several circuits must be controlled by one signal.

Pin Connections Relay

[S] → [8]

[+] → [+5V]

[-] → [GND]

[+RE] → [+5V]

[-RE] → [+LED]

LED

[+LED] → [+RE]

[-LED] → [GND]

208
© 2019 Exceed Robotics TM

RELAY Example Code:

int relay_pin = 8;
int led_pin = 13;

void setup()
{
 pinMode(relay_pin, OUTPUT);
 pinMode(led_pin, OUTPUT);
 digitalWrite(led_pin, HIGH);
}

void loop()
{
 digitalWrite(relay_pin, HIGH);
 delay(5000);
 digitalWrite(relay_pin, LOW);
 delay(5000);
}

9.2 Practice Examples

1) Using a Meter to control an LED

Figure 8-5. A circuit with an LED and meter attached to it.

209
© 2019 Exceed Robotics TM

Sample Code:

int Meter = 0;
int LED = 11;

void setup()
{
 pinMode(Meter, INPUT);
 pinMode(LED, OUTPUT);
}

void loop()
{
 int brightness = analogRead(Meter);
 analogWrite(LED, brightness);
}

2) Moving a Servo Motor using only a Potentiometer

Sample Code:

#include <Servo.h>

Servo myservo;

210
© 2019 Exceed Robotics TM

int pot;
int angle;

void setup()
{
 myservo.attach(9);
 myservo.write(0);

}

void loop()
{
 pot = analogRead(A2);
 angle = map(pot, 0, 1023, 0, 180);
 myservo.write(angle);
}

9.3 Homework Questions

Q. 1) Using a dial to position a motor.

Figure 8-6. A circuit with an LED and meter attached to it.

Figure 8-7. A circuit with a dial to control a motor.

211
© 2019 Exceed Robotics TM

a. Build the following circuit above.

b. Write a program to map the dial position to the speed of the motor

Remember: analog input range is: 0 - 1023

Analog output range is: 0 - 255

Simple map formula (assumes both ranges start at 0)

Out = (In / Max_In) * Max_Out + Min_Out

Q2. Create a digital safe! [CHALLENGE]

The goal will be to have three potentiometers to control the combination. When the safe is

locked, display its status and the values of the three dials. Use a push button to confirm the

combination entered and checked if it's correct. The suggested range for the combination is

60, like a real lock. However, you can decide how your lock works.

Figure 8-8. An LCD displays.

The project should include:

Three potentiometers

1 LCD

One push button

LEDs (optional)

212
© 2019 Exceed Robotics TM

Extension: As a challenge, make this work with one potentiometer instead of 3. It should still

require three numbers for the combination.

213
© 2019 Exceed Robotics TM

CHAPTER 10: HELPFUL BEGINNER TIPS

214
© 2019 Exceed Robotics TM

10.1 Common Issues and Troubleshooting

Now that you have learned a lot about hardware, software, shields and additional pieces Arduino

has to offer, you are bound to meet some issues and challenges while building these complex

circuits. This chapter is for you! Here, you can find some common issues. And solutions to those

problems.

10.1.1 Problems in Circuits

.

Figure 9-1. A complicated circuit

Tips to prevent problems in circuits:

Make sure that you have properly connected all the hardware parts in the circuit diagram

Connection is key, some wires may come loose over a certain period. Therefore, make

sure that all the wires are in place and they are properly secured.

Some hardware parts may break down for some unexpected reason. Therefore, make

sure that your parts are not damaged, as it can affect your whole project

Make sure that you are using the correct pins. With Arduino UNO having so many pins, it

is easy to connect the wires in the incorrect pins.

Make sure that you are using the correct Arduino parts
Helpful

Tips

to know!

215
© 2019 Exceed Robotics TM

10.2 Problems in Programming

10.2.1 Variable

10.1.3 Equals, Assignments and Syntax:

Tips to prevent errors in Programming:

Make sure that the name of the variable you are using is the same all the time.

Sometimes you can misspell the variables and that creates an error.

Make sure that you don’t repeat the same name for the variables. If you use the same

name for different variables, then your code will be confused as to which value it needs

to get.

Make sure that you name your variables with proper names so that they match the data

inside of the variable. For example; if you have an integer, you may want to make a

variable name my_int and assign an integer to this variable.

Helpful

Tips

to know!

When programming with Arduino, it is a very common mistake to confuse the

assignment operator to the comparison operator. For example:

if (myInt = yourInt)

 {

 //Statements

 }.

216
© 2019 Exceed Robotics TM

Do you see the mistake here? Instead of using ‘==’, the code is using ‘=’. Therefore, the

code is not comparing the variables, but it is assigning the variable yourInt to myInt. This is

a very common mistake and the simple fix is to ensure you are using adding two ‘==’ to the

if statement.

Float and Integer Math. In Arduino, when doing floating in math, it is very important to

know what kind of syntax to use. For example:

This example will print out the number 2 instead of 2.5. The compiler is only looking at

integers and it is looking at the integer math. Then it assigns the value of float to the num2.

An easy way to fix this problem is to make the number a float beforehand. Just by adding .0

to the number. This makes the number a float and it does not change the value of the

number. For example:

This example will print out the number 2.5. The compiler now notices that the number is a

float/decimal, therefore the answer will be in decimal as well.

Note: Another common mistake is not putting ‘;’ at the end of each line. You must put ‘;’ at

the end of each line of code. If you don’t, it will give out an error.

;

Figure 9-3. The semicolon

int num = 2;

float num2 = 5 / num;

Serial.println(num2);

Int num = 2;

Float num2 = 5.0 / num;

Serial.println(num2)

217
© 2019 Exceed Robotics TM

If, Else, Else if, Functions

You must remember to properly spell the If, Else, Else if or Function. If You misspell the

functions, then they will not execute, meaning that you will not get a desired outcome.

If, Else, Else if

Figure 9-4. If else spelling.

Libraries

If you need to include a library in your code, then you need to go to the Sketch Folder in

Arduino, go to include library and then include the library that you need.

If you don’t see the library that you need, then you can download a library from Arduino. You

can go to the Sketch Folder in Arduino, go to Include Library and then scroll up to see Manage

Libraries. When you click on that, you can search up the library that you need and install it.

Figure 9-5. The Arduino IDE and how to access Arduino

Libraries

Click on the sketch
tab to access
Arduino Libraries. 2. Select “Include Library”

3. Select the

necessary Library.

4. If you cannot find

the library you are

looking for, select

“Manage Libraries”

218
© 2019 Exceed Robotics TM

10.3 Common Errors

DIY Robotics Lab provides an excellent summary of the common errors you might encounter:

The error on line 1 is caused by mixing the comment styles. The comment begins with the “/*”
characters but ends with “//” instead of the “*/” characters. The correct line is as follows:

Search for the specific library you need after selecting “Manage Libraries”

Figure 9-6. The Arduino Search Libraries Menu

2. Once you find

the library you

are looking for,

you can Install it

/*— Blink an LED —//

Error: Uncaught exception type:class java.lang.RuntimeException

java.lang.RuntimeException: Missing the */ from the end of a /*

comment */

at processing.app.Sketch.scrubComments(Sketch.java:2008) …

219
© 2019 Exceed Robotics TM

This is another problem with incorrect commenting technique. In this line the “\\” characters are
used to begin a comment instead of the “//” characters. The correct line follows:

This is an easy mistake to make. The problem is the semicolon “;” at the end of a function
declaration. The article “Learning the C Language with Arduino” contains a section about
correct usage of semicolons. To correct this problem, remove the semicolon as shown below:

To correct the error shown above, the corrections are shown below:

pinMode(ledPin OUTPUT); //Set up Arduino pin for output only.

The clue to this problem is found in the message “error: too few arguments to function ‘void
pinMode(uint8_t, uint8_t)’“. The message includes a list of the function’s arguments and data
types (uint8_t). The error is complaining that we have too few arguments. The problem with this
line of code is the missing comma between ledPin, and OUTPUT. The corrected code is on the
following line:

/*— Blink an LED —*/

int ledPin = 23; \\ We’re using Digital Pin 23 on the Arduino.

error: stray ‘\’ in program

int ledPin = 3; // We’re using Digital Pin 3 on the Arduino.

void setup();

error: expected unqualified-id before ‘{’ token

void setup()

error: too few arguments to function “void pinMode(uint8_t uint8_t)”
At global scope: In function ‘void setup()’:

error:expected`)’beforenumericconstant/home/myDirectory/Desktop/myPr
ograms/arduino-0015/hardware/cores/arduino/wiring.h:102:

https://diyroboticslab.wordpress.com/2009/06/04/ledblink-arduino-program/

220
© 2019 Exceed Robotics TM

In this line the type specifier for the function is missing.

To fix this problem place the data type for the function’s return type. In this case we’re not
returning any value, so we need to add the keyword void in front of the loop function name.
Make the following change:

The block of code that makes up the loop function should be contained within curly braces “{“
and “}”. In this line a left parenthesis character “(“ is used instead of the beginning curly brace
“{“. Replace the left parenthesis with the left curly brace as shown below:

pinMode(ledPin, OUTPUT); //Set up Arduino pin for output only.

loop()

error: expected constructor, destructor, or type conversion before
‘(’ token

void loop()

void loop () (

error: function ‘void loop()’ is initialized like a variable

void loop ()

{

 //Statements

}

/The HIGH and LOW values set voltage to 5 volts when HIGH and 0 volts LOW.

error: expected primary-expression before ‘/’ token At global scope:

221
© 2019 Exceed Robotics TM

This line is supposed to be a comment describing what the program is doing. The error is caused
by having only one slash character “/” instead of two “//”. Add the extra slash character as shown
below:

This error message is complaining that the variable “high” was not declared. Programming in C
is case sensitive, meaning that it makes a difference if you are using upper or lower case letters.
To solve this program replace “high” with the constant value “HIGH” then recompile.

This error message is helpful in identifying the problem. This program statement was ended with
a colon character “:” instead of a semicolon “;”. Replace with the proper semicolon and
recompile.

This error can be particularly troublesome because the comma “,” after the variable ledPin is
actually a period “.” making it harder to spot the problem.

The C programming language allows you to build user defined types. The dot operator (period
“.”) is part of the syntax used to reference the user type’s value. Since the variable ledPin is
defined as an integer variable, the error message is complaining about the unqualified-id.

//The HIGH and LOW values set voltage to 5 volts when HIGH and 0 volts LOW.

digitalWrite(ledPin, high); //Setting a digital pin HIGH turns on the LED.

error: ‘high’ was not declared in this scope at global scope:

digitalWrite(ledPin, HIGH); //Setting a digital pin HIGH turns on the LED

delay(1000): //Get the microcontroller to wait for one second.

error: expected `;’ before ‘:’ token At global scope:

delay(1000); //Get the microcontroller to wait for one second.

digitalWrite(ledPin. LOW); //Setting the pin to LOW turns the LED off.

error: expected unqualified-id before numeric constant At global scope

222
© 2019 Exceed Robotics TM

In function ‘void loop()’:

This error was caused by the delay function name being spelled with an incorrect upper-case
character for the letter “d”. Correct the spelling using the lower case “d” as shown below:

There is an extra curly brace at the end of this program. Delete the extra brace to correct
this error.

The compiler completed without any more error messages so why doesn’t the LED flash after
loading the program on my Arduino? No error message was given by the compiler for this
problem:

The Digital pins are limited to pin numbers 0 through 13. The code is assigning a non-existant
pin 23 to the ledPin variable. Change the pin assignment to pin 3 and the program should
compile, upload to your Arduino and flash the LED if everything is wired properly on your
breadboard.

digitalWrite(ledPin, LOW); //Setting the pin to LOW turns the LED off.

Delay(1000); //Wait another second with the LED turned off.

error: ‘Delay’ was not declared in this scope At global scope:

delay(1000); //Wait another second with the LED turned off.

Void loop()

{

 //Statements

}

}

error: expected declaration before ‘}’ token

int ledPin = 23; \\We’re using Digital Pin 23 on the Arduino.

223
© 2019 Exceed Robotics TM

10.4 Good Programming Techniques

As a programmer, it is very important to learn good programming techniques that will help you

in your future. Before you start making a project or your code. You first need to make a PPD or

Project Planning Document. A PPD allows you to see everything that you will have in your

project. PPD includes: the description of the project that you are doing, a flowchart, a

PERT chart, and everything that you think is valuable or worth sharing in PPD. Let’s first define

all those terms and explain how to work with them.

Description of a project or a synopsis of a project is a brief discussion about your project.

What will it do? What does it do? What components does this project require? These are all

the questions that you might want to consider asking yourself when making a description of a

project. You can add more information you need for the description of the project that you are

doing.

Flowchart is self-explanatory. It is a chart that shows the flow of the project. The flowchart

shows the steps as boxes of various kinds, and their order by connecting the boxes with

arrows. It shows the logic of a code. You don’t have to know how to make a proper flowchart

using different rectangular shapes and arrows. You just need to visualize the flow of the code

and how everything will be connected so that it makes a logical sense.

PERT chart or Program Evaluation Review Technique is a project management tool used to

schedule, organize, and coordinate tasks within a project. It helps the user, in this case

yourself, to organize and prioritize certain tasks and programs. In order to make a PERT chart,

you need to create circles with different tasks. Then you can connect each circle with an arrow

showing that from this task, your next task is going to be a new circle.

For example:

A. Description

B. Flowchart

C. PERT chart

D. Engineering Design Process

E. Buying the supplies

F. Creating a prototype

G. Testing

int ledPin = 3; \\We’re using Digital Pin 3 on the Arduino.

224
© 2019 Exceed Robotics TM

H. Making an updated version of the product

I. Showcasing it to other people.

The chart above shows you a distinct set of tasks that you need to finish over a certain period.

The tasks all depend on how much you are working and how many tasks do you need to finish

over what time. If you need to have more tasks, then you will add more circles to the chart and

add numbers representing either the number of days or the number of weeks, it all depends on

you. If you need less tasks, then you will subtract circles from the chart. In the end, PERT chart

allows you to see on what tasks you will be working and how long each task will take in terms

of time.

Figure 9-7. An example of a PERT Chart

225
© 2019 Exceed Robotics TM

CHAPTER 11: ARDUINO RESEARCH SKILLLS

226
© 2019 Exceed Robotics TM

11.1 Engineering Design Process

Before you begin designing everything that you do in Arduino, you must know how the

Engineering Design Process works and how to make it while designing your own projects.

You may be asking, what is an Engineering Design Process? The Engineering Design

Process is a series of steps that engineers use in creating functional products and processes.

It is a guide that helps you convert resources optimally to meet a stated objective. An

Engineering Design Process consists of 7 steps as you can see in the flowchart below.

Figure 10-1. A flowchart of the Engineering Design Process

227
© 2019 Exceed Robotics TM

11.1.1 WHAT ARE THE REQUIREMENTS?

Before you start building and engineering products/processes, you first need to know what the

requirements are for developing a project. The conditions may include cost, timing,

manufacturing, assembly, features etc. If you look at the table below, this is an example of

what your table of requirements should look like. You can have multiple identical categories if

the conditions are not the same.

No. Category Requirement

1 function
To wirelessly activate a finger based on the

position of your finger

2 feature Detect the positioning of a person’s finger

3 feature Make a bionic finger mimic a person’s finger

4 feature wireless

5 cost Up to $25

6 timing
The prototype was done in 3 weeks (week of

November 14)

7 manufacture No extra manufacturing needed

8 assembly
No glue or soldering, ease of assembly for 9-year

old

9 document Assembly and programming slides

11.1.2 HOW CAN IT BE DONE?

Research the problem and see what the project requires from you. It would be best if you

came up with questions to research on. Then, you can identify and solve the problem more in-

depth and specific steps. Maybe you use a sensor to complete this project; then you must

research on how to use this sensor. The table below, this is an example of what your table

should look like.

228
© 2019 Exceed Robotics TM

No. Category Research Details

1 function
How do I use the flex sensor’s data to accurately and precisely

move the finger?

2 feature
What will I use for detecting the finger’s position? How will I

make a flex sensor?

3 feature
What will I put the sensor on? How will it fit with a hand

comfortably?

4 feature

How do I move the finger and have it always in the right

position? If I need to, how do I recalibrate it? What can I do to

reduce drift as much as possible?

5
feature

What will I use to make the sensors around my hand compact

and size efficient?

6
feature

What are technologies for wireless transmission feasible?

7 cost

What is the opportunity cost of using a flex sensor that we pay

for versus making a flex sensor? The opportunity cost of

different ways of making it wireless?

11.1.3 RESEARCH ON POSSIBLE SOLUTIONS

From the questions on the Research Table, you must research the items that you asked.

Moreover, record the information gathered on a new table with citations from where you found

the useful information. If you did not see the answers to your questions, then it is okay. You can

try to find ways to solve the problem by thinking outside the box or implementing new ideas to

solve this problem. Make sure to fill the whole table; never leave a cell without any research. If

you look at the chart below, this is an example of what your Solutions Table should look like:

.

229
© 2019 Exceed Robotics TM

No

.
Category Possible Solutions

1 function

Flex sensor to servo finger positioning can be done by experimenting to

find the highs and lows of the flex sensors values from straight to most bent

wanted, as well as the range for the servo for the finger, and use map

Link: https://codebender.cc/sketch:55013#GloveTX_ENG_v1.ino

2 feature

Flex sensor, can either buy or make own

using paper, construction paper, aluminum foil

Link: https://www.instructables.com/id/Arduino-Make-a-Flex-Sensor-for-

Robotic-Hand-Cheap-/

3 feature

To make a casing to put the flex sensor on that my hand will go into, I can

design a series of joints and loops to fit my fingers through, ensuring that

bends at joints are detected

4 feature

For wireless transmission:

https://www.instructables.com/id/wireless-pan-and-tilt-camera-rig-with-

arduino/

https://howtomechatronics.com/tutorials/arduino/arduino-wireless-

communication-nrf24l01-tutorial/

Using Nano or lily pad 328, uncertain of the power supply, investigate

power supply options or type of “Arduino.”

Nano – 6-20V, lily pad – 1.7-4.5V

5 feature

To make the sensors around my hand compact and efficient, I will spread

the sensors around my hand as flat as possible, so it would not interfere

with my hand movement. I will make sure the sensors are precisely

measured so that sensors would not take extra space.

6 feature Radio Frequency Transmission, Infrared transmission, WIFI transmission

7 cost

Flex sensor is $12.50 vs making the flex sensor which does not cost

efficient. Rather than making the flex sensor, which takes more time, I can

buy it.

https://codebender.cc/sketch:55013
https://www.instructables.com/id/Arduino-Make-a-Flex-Sensor-for-Robotic-Hand-Cheap-/
https://www.instructables.com/id/Arduino-Make-a-Flex-Sensor-for-Robotic-Hand-Cheap-/
https://www.instructables.com/id/wireless-pan-and-tilt-camera-rig-with-arduino/
https://www.instructables.com/id/wireless-pan-and-tilt-camera-rig-with-arduino/
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/

230
© 2019 Exceed Robotics TM

11.1.4 CHOOSING A PROMISING SOLUTION
By selecting the most promising solution, you are increasing the success of the project

significantly as out of all the possible solutions; you choose the one that looked the most

promising. It would help if you decided which of the possible solutions that have the best

chance of meeting the project requirements.

11.1.5 BUILD A PROTOTYPE

This is the most exciting part of the Engineering Design Process. As after all the research that

you have put in for completing this project, you can finally build a prototype. If you have more

questions and problems, then you can revert to your Research Table and do more research on

how to solve specific problems that you encountered.

11.1.6 EVALUATE THE PROTOTYPE
At this step, you must evaluate the prototype. Does the prototype meet all my requirements in

step #1? After you are done evaluating your prototype, then you must input the information of

the prototype on a new table. Below is an example of how Evaluation Table looks:

No. Category Project Requirement Meets Requirement?

1 function
To wirelessly activate a finger based on the

position of your finger
Yes

2 feature Detect the positioning of a person’s finger Yes

3 feature
Make a bionic finger mimic a person’s

finger
Yes

4 feature wireless Yes

5 cost Up to $25 No

6 timing
The prototype was done in 3 weeks (week

of November 14)
No

7 manufacture No extra manufacturing needed Yes

8 assembly
No glue or soldering, ease of assembly for

nine-year-olds
Yes

9 document Assembly and programming slides Yes

231
© 2019 Exceed Robotics TM

11.1.7 REDESIGN AS NEEDED

At this step, you can redesign the project/prototype as needed. If the prototype did not meet

the Evaluation Requirements, then you need to redesign the project as needed so the final

product will meet all the requirements needed. If your prototype did not function completely,

then you must redesign, rebuild and retest until your product works.

11.2 How Do You Start?

After leaning the Engineering Design Process, you must learn how to identify, break down and

research a problem efficiently and effectively. You can see the cycle of researching a problem

from the chart below:

Breaking Down the Problems

The first step, you need to break down the problem into many different parts. This process will

help you to refine your research and help you to solve the problem more effectively.

Figure 10-2. A chart of steps taken to break down a complex problem

232
© 2019 Exceed Robotics TM

Determine Useful Keywords

The second step, you need to determine useful keywords to get the best research. The

valuable keywords would be the Arduino parts that you are going to use or questions about the

project that you do not understand. For example, let’s say you are going to design a 2D

platformer game with an LCD and an Arduino. Then you must search “Arduino LCD” to get the

best research and answer this question.

Figure 10-3. Breaking down a problem involves taking a complex problem

and breaking it down into manageable, unique parts.

233
© 2019 Exceed Robotics TM

Determine Reliable Resources/Consult Multiple Sources

The third step, you need reliable resources. There are many different types of reliable

resources. However, this handbook will provide you with the four reliable resources for many

separate occasions. The image below shows some reliable resources you can use and the

type of information they provide:

Figure 10-4. Using specific keywords to get the best search results possible

to research a project you want to build.

Figure 10-5. Using specific keywords to search for a specific result to research and learn.

234
© 2019 Exceed Robotics TM

11.3 Types of Useful Resources

Four different types of resources will help you with circuits, mechanics or programming. These

resources are API’s, Schematics, Data Sheets and Code Samples.

Figure 10-6. A list of useful resources and the useful information

you can find with them while researching for Arduino based

projects.

Figure 10-7. A list of useful resources that you can come across while

designing circuits, projects, code etc. These include API’s, Schematics,

Data Sheets and Code Samples.

235
© 2019 Exceed Robotics TM

11.3.1 API’s

API is an acronym that stands for “Application Programming Interface.” An API lists operations

and things that developers can use in the project they created, along with a description of what

they do. It aims to cover everything a person would need to know for practical applications. API

documentation is found in documentation files, but they can also be found in blogs, forums,

and Q&A websites.

In the interest of clarity, API documentation may include a description of classes and methods

in the API as well as "typical usage scenarios, code snippets, etc.".

Figure 10-8. This image shows you how to read an API. There are descriptions, as

well as arguments and return types for an API.

236
© 2019 Exceed Robotics TM

11.3.2 Datasheets

A datasheet or spec sheet is a document that summarizies the performance or technical

specifications/characteristics of a product in sufficient detail that allows a person to

understand the physcial and software aspects of the product. The datasheet includes

information that can help in making a purchasing decision about a product by providing

technical specifications about the product.

The image below shows you how to read a Datasheets. A Datasheet contains PINOUTS

where you can acquire a PIN and the purpose for each PIN. Also, there are Electrical Ratings

on the Datasheets, which shows you the minimum and maximum voltages and current

requirements for these voltages.

Figure 10-9. This image shows you how to read a datasheet.

237
© 2019 Exceed Robotics TM

11.3.3 Schematics

A schematic, schematic diagram or wiring diagrams/circuit diagram are associated with

electrical circuits. These diagrams show how the different components of a circuit are

connected. These diagrams have lines representing connecting wires, while other components

such as lightbulbs and switches are represented by standardized symbols called electrical

schematic symbols.

Having a schematic diagram on hand may help a user design an entire circuit before building it

or troubleshoot a circuit that has stopped working. Schematic diagrams can also be used to

examine how an electronic can function, without detailing the hardware or software used in the

electronic.

The next image is how you read a schematic. A schematic allows you to visualize the circuit as

well as the necessary components that are required.

Figure 10-10. This image shows you how to read a schematic.

238
© 2019 Exceed Robotics TM

11.3.4 Code Sample

A code sample is used to demonstrate programming tasks that are not easily demonstrated in
a full code. A code sample is a complete with references to all required source files in its
description.

When you approach a code sample, try to put yourself in the readers’ shoes. Ask yourself
questions like these to enhance your samples and the content around them:

● “What do I want to learn from this sample?” (Not “What do I want to see this sample
do?”)

● “How do I know that specific code blocks do what it looks like they are supposed to
do?”

● “How can I map my own input and output requirements to those demonstrated in the
sample code components?”

● “Where do I go to learn more? What OTHER resources are easily available?”

239
© 2019 Exceed Robotics TM

CHAPTER 12: ARDUINO CODING REFERENCE

240
© 2019 Exceed Robotics TM

12.1 Arduino Command Quick Reference

Arduino Command Quick Reference Table

Command Description

setup() A function that runs once when the Arduino first starts. See also

http://arduino.cc/en/Reference/Setup.

loop() A function that is repeatedly run after the setup() is completed and

until the Arduino is turned off. See also

http://arduino.cc/en/Reference/Loop.

pinMode() Sets the PIN entered as the argument to either output electricity. See

also http://arduino.cc/en/Reference/PinMode.

OUTPUT Keyword set in the second argument of pinMode() that says the pin

will output electricity. See also

http://arduino.cc/en/Referenve/Constants.

digitalWrite() Turns on or off the electricity at the specified pin. See also

http://arduino.cc/en/Reference/DigitalWrite.

HIGH Keyword used to turn on the electricity in digitalWrite(). See also

http://arduino.cc/en/Reference/Constants.

LOW Keyword used to turn on the electricity in digitalWrite(). See also

http://arduino.cc/en/Reference/Constants.

delay() Pauses the Arduino Uno for a specified number of milliseconds. See

also http://arduino.cc/en/Reference/Delay.

12.2 Functions Reference

Functions: Digital I/O

Command Description Example

pinMode(pin, mode)

Configures the specified pin to

behave either as an input or an

output. the pin is the pin number

pinMode (13, OUTPUT);

digitalWrite (pin,

value)

Write a HIGH or a LOW value to

a digital pin.

digitalWrite (2, LOW);

http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Reference/Loop
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Referenve/Constants
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Delay

241
© 2019 Exceed Robotics TM

digitalRead (pin)

Reads the value from a specified

digital pin. The result will be

either HIGH or LOW

digitalRead (4);

tone(pin, frequency,

duration)
Generates a sound tone (8, 1000, 2000);

Functions: Analog I/O

Command Description Example

analogWrite(pin,value

)

Writes an analog value (PWM

wave) to a pin. Value is the duty

cycle: between 0 (always off) and

255 (always on). Works on pins

3, 5, 6, 9, 10, and 9.

analogWrite (9, 256);

analogRead(pin) Reads the value from the

specified analog pin and returns

a value between 0 and 1023 to

represent a voltage between 0

and 5 volts (for default). It takes

about 0.0001 seconds to read an

analog pin.

analogRead (A0);

Functions: Serial Communication

Command Description Example

Serial.begin(9600) Used to begin serial

communications, typically at a

9600 baud rate (bits per second)

Serial.begin (9600);

Serial.print(Val,format)

;

Prints data to the serial port as

human-readable ASCII text.

Serial.print(78) gives "78"

Serial.print(1.23456)

gives "1.23"

242
© 2019 Exceed Robotics TM

Serial.println(1.23456, 4)

gives "1.2346"

Serial.print("Hello world.")

gives "Hello world."

Serial.println(val); Prints val followed by carriage

return

Int i;

i = analogRead (A0);

Serial.println (i);

Will read the value of i

and prints it

Functions: Servo Motor Control

Command Description Example

#include <Servo.h> Includes servo library in Arduino #include <Servo.h>

Servo motorname
Makes a name for the servo

motor
Servo armmotor;

myservo.attach(pin) Assigns Arduino pin to Servo armmotor.attach(9);

myservo.write(Val)
Moves servo motor to the angle

in Val
armmotor.write (60);

myservo.read()
Read the current angle of the

servo (from 0 to 180 degrees)
armmotor.read (armmotor);

Functions: Time

Command Description Example

millis()

Returns the number of

milliseconds since the Arduino

board began running the current

program

int tm;

tm = millis();

243
© 2019 Exceed Robotics TM

delay()

Pauses the program for time (in

milliseconds) specified as a

parameter

digitalWrite (3, HIGH);

delay (1000);

Variables

Command Description Example

int i;
Will define the word i to be an

integer variable

int i;

i = 10;

12.3 Structures Reference

Structures: Comparison Operators

x == y (x is equal to y)

 x != y (x is not equal to y)

 x < y (x is less than y)

 x > y (x is greater than y)

 x <= y (x is less than or equal to y)

 x >= y (x is greater than or equal to y)

Structures: Boolean Operators

&& (and)

|| (or)

! (not)

Structures: Control Structures

Command Description

if Tests whether a certain condition has been reached. Used in

conjunction with a comparison operator

Example:

244
© 2019 Exceed Robotics TM

if (x > 120)

{

 digitalWrite(LEDpin, HIGH);

}

if (x > 120)

{

 digitalWrite(LEDpin, HIGH);

}

if (x > 120)

{

 digitalWrite(LEDpin, HIGH);

}

if (x > 120)

{

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

}

Command Description

if...else Allows you to do multiple tests

Example

if (pinFiveInput < 500)

{

 // do Thing A

}

else if (pinFiveInput >= 1000)

{

 // do Thing B

}

else

{

 // do Thing C

}

Command Description

while while loops, will loop continuously, and infinitely until the

expression inside the parenthesis, () becomes false

Example

var = 0;

while(var < 200){

245
© 2019 Exceed Robotics TM

  // do something repetitive 200 times

  var++;

}

Command Description

break the break is used to exit from a do, for, or while loop,

bypassing the normal loop condition

Example

    if (sens > threshold){      

       x = 0;

       break;

    }  

246
© 2019 Exceed Robotics TM

CHAPTER 13: TOOLS, COMPONENTS, AND

ADDITIONAL INFORMATION

247
© 2019 Exceed Robotics TM

13.1 Starter Kits

Starter Kits are a useful set of essential items and instructions for taking up an activity or

process for the first time. Starter Kits walk you through the basics of using Arduino in a hands-

on way.

13.1.1 KeyeStudio Starter kit

If you need more information you can visit:

https://www.amazon.ca/KEYESTUDIO-Starter-Arduino-Educational

Gifts/dp/B017D6TY14/ref=sr_1_3?keywords=keyestudio+uno+starter+kit&qid=1552058447&s

=gateway&sr=8-3

Alternatively, you can visit: https://www.keyestudio.com/

KeyeStudio is a great place to

buy Arduino hardware parts as

well as Arduino Starter Kits. You

get 80 components such as an

Uno R3 board, a 5V Relay, a

DHT11 Temperature and

Humidity sensor, an ultrasonic

sensor, a 9G Servo Motor, many

LEDs, and more. This starter kit

also comes with interactive

courses that you can learn from

and software, video, libraries and

document tutorials to show how

to use Arduino.

Figure 12-1. The components included in the KeyeStudio

starter kit.

https://www.amazon.ca/KEYESTUDIO-Starter-Arduino-Educational%20Gifts/dp/B017D6TY14/ref=sr_1_3?keywords=keyestudio+uno+starter+kit&qid=1552058447&s=gateway&sr=8-3
https://www.amazon.ca/KEYESTUDIO-Starter-Arduino-Educational%20Gifts/dp/B017D6TY14/ref=sr_1_3?keywords=keyestudio+uno+starter+kit&qid=1552058447&s=gateway&sr=8-3
https://www.amazon.ca/KEYESTUDIO-Starter-Arduino-Educational%20Gifts/dp/B017D6TY14/ref=sr_1_3?keywords=keyestudio+uno+starter+kit&qid=1552058447&s=gateway&sr=8-3
https://www.keyestudio.com/

248
© 2019 Exceed Robotics TM

13.1.2 Arduino Starter Kit

If you need more information or you still have questions, you can visit:

https://store.arduino.cc/usa/arduino-starter-kit

Alternatively, you can visit: https://www.arduino.cc/

The official Arduino website also

contains a starter kit that you can

purchase. The Starter Kit is a great way

to get started with Arduino and coding.

It has all the necessary components

you need, to do fun projects following

the step-by-step tutorials in the Project

Book. Starting with the basics of

electronics, to more complex projects,

the kit will help you control the physical

world with sensors and actuators.

Figure 12-2. The Arduino starter kit.

Figure 12-3. The components included in the Arduino’s starter kit.

https://www.arduino.cc/

249
© 2019 Exceed Robotics TM

13.2 Additional Information on the Web

13.2.1 The Blog

A blog is an essential way to find, research and promote the projects that interest you. If you

go to the official Arduino website and click on the Blogs in the Community section, to find

different blogs that people have submitted with up-to-date projects and information you can

use.

Got to the official Arduino website: https://www.arduino.cc/

2) Under the community section, click on the BLOG on the top right corner and then you

can scroll through the different projects people have made.

1.

2.

If you need more information or you still have questions, you can visit:

https://blog.arduino.cc/

250
© 2019 Exceed Robotics TM

1) Additionally another good blog resource is the official KeyeStudio website and blog

for updates for their products: https://www.keyestudio.com/

Visit the blog here: https://keyestudio.com/blog/

https://www.keyestudio.com/
https://keyestudio.com/blog/

251
© 2019 Exceed Robotics TM

13.2.2 Videos

Videos are a great way to learn and educate yourself on different topics and subjects. Videos

are also beneficial when it comes to explaining the Arduino material. To better understand

different topics in Arduino, such as sensors, motors, etc. You can visit the Exceed Robotics

YouTube channel. On Exceed Robotics YouTube channel, you can find tutorials, explanations

and features of many different Arduino hardware parts and projects. It is a great place to learn

and understand the material, primarily since the professionals in this field teach it.

Other companies as well have useful videos that you can use to learn about Arduino projects

in-depth such as:

● Adafruit: https://www.youtube.com/user/adafruit/videos

● SparkFun: https://www.youtube.com/user/sparkfun/videos

● Make Magazine: https://www.youtube.com/user/makemagazine/videos

● KeyeStudio: https://www.youtube.com/channel/UCS7bhtVrSE2Wpy2B12kIGdQ

12.2.3 Websites

Here are websites where you can find additional information on the topic of Arduino:

● Reference: http://exceedrobotics.com/

● Reference: https://keyestudio.com/

● Reference: https://www.arduino.cc/

● Reference: https://www.instructables.com/

● Reference: https://www.adafruit.com/

● Reference: https://www.learn-c.org

https://www.youtube.com/user/adafruit/videos
https://www.youtube.com/user/sparkfun/videos
https://www.youtube.com/user/makemagazine/videos
https://www.youtube.com/channel/UCS7bhtVrSE2Wpy2B12kIGdQ
http://exceedrobotics.com/
https://www.instructables.com/
https://www.adafruit.com/
https://www.learn-c.org/

252
© 2019 Exceed Robotics TM

CHAPTER 14: GLOSSARY

253
© 2019 Exceed Robotics TM

Actuator A device that translates an electrical signal into a real-world activities such as light,

sound or movement. Examples include motors, lights and speakers.

Alligator clips Wires with spring-loaded clips that resemble the jaws of an alligator. They are

useful for prototyping soft circuits or connecting components that don’t use jumper wires.

Analogue A signal that varies between LOW and HIGH, as opposed to a digital signal. On the

Arduino Uno, an analogue signal can be measured as a number between 0 for ground and

1023 for 5V. An analogue signal can be output as a value between 0 for 0V and 255 for 5V.

Anode The positive leg of a directional component, such as the long leg of an LED.

Argument A piece of information given to a function, which the function then uses to perform

its task. The argument goes inside the brackets that follow the function name. For example,

the function delay(1000) has the argument 1000, which is the number of milliseconds you want

the Arduino to wait before executing the next line.

Array A list of the same type of thing in code. For example, an array can hold a list of ints.

Binary A number that uses only the digits 0 and 1, as opposed to decimal, which uses the

digits 0 to 7. Binary is also known as base-1. Decimal is referred to as base-8.

Breadboard A reusable device that allows you to create circuits without needing to solder all

the components. Breadboards have some holes into which you push wires and components to

create circuits.

Capacitance The ability to store an electrical charge. Electrical components built especially to

hold a charge are called capacitors, but other objects – even people – also have capacitance.

Cathode The negative leg of directional components, such as the short leg of an LED.

Comments Notes within your code that explain what a line or section of code is intended to

do. Each comment line begins with // or, if you want to write a comment that spans multiple

lines, it is placed between /* and *. These special characters tell the computer running the

program to ignore that line or lines.

Compiling The process of taking code written by a human and turning it into instructions that

can be understood by a machine.

Current The rate at which electrical energy flows past a point in a circuit. It is the electrical

equivalent of the flow rate of water in pipes. Current is measured in amperes (A). Smaller

currents are measured in milliamperes(mA).

Debugging The process of locating the cause of any errors in your computer program code

and fixing them.

254
© 2019 Exceed Robotics TM

Declaring Where a new variable is created by giving it a name and a data type such as int.

The variable does not hold value until it is given its first value.

Digital A signal that is only either on or off, or HIGH or LOW. On the Arduino Uno, a HIGH

signal is 5V, and a LOW signal is ground.

Direct current (DC) The type of electricity used in Arduino circuits. It’s the same kind that is

generated by a battery and is the opposite of alternating current (AC), which is what comes out

of mains plugs in the wall.

Driver A piece of software that lets your computer communicate with an external device, such

as a printer or a keyboard.

Dual in-line package (DIP or DIL) One possible shape of an IC chip. It has two rows of legs

that can fit into a breadboard.

Duty cycle The ratio of time a signal is HIGH versus LOW in a given cycle. In PWN, the higher

the duty cycle, the higher the output voltage.

Float A data type for numbers that aren’t whole numbers, but include a decimal place such as

1.3 or –54.087.

Floating input A pin that is not connected to anything. The pin reads in random values if it is

not connected to a voltage source such as ground, 5V or a sensor.

for-loop A programming device that repeats a block of code for a predetermined number of

times.

Function A set of lines of code that have a name. A function can be used over and over again.

It may take some information as input and output more information when it is finished, but not

all functions need to do that.

Instantiation Giving a variable value for the first time. Instantiation can happen at the same

time you declare the variable, or you can do it later, but the declaration always needs to come

first.

Integrated circuit (IC) Circuits contained within a single chip. The same circuit can be put into

differently shaped chips, called packages. When working with a breadboard, you need what is

known as a DIP or DIL package. That’s the shape that has legs that fit into a breadboard.

Integrated development environment (IDE) A software application that is used to write

computer code in a particular language; it’s also referred to as a programming environment.

The application can create and edit code, as well as run (or execute) the code. Many IDEs also

provide features to help programmers debug their programs – in other words, check their

programs for errors.

255
© 2019 Exceed Robotics TM

Light-emitting diode (LED) An electrical component that lights up when electrical current

flows through it. A diode only lets electricity flow in one direction, so an LED lights up only

when the long leg is connected to the positive side of a power source, and the short leg is

connected to the negative side. If the legs are switched, the LED won’t light up.

Library A collection of reusable functions in code that can be imported and used in multiple

sketches.

Light-dependent resistor A resistor that changes its resistance according to how much light it

is exposed to. It is also sometimes called a photoresistor.

Long A data type that can hold whole integer numbers from –2,147,483,648 to 2,147,

483,647.

Newline character A character that represents what happens when you press the Enter or

Return key on your keyboard.

Ohm’s Law The mathematical relationship between voltage, current and resistance. Voltage

equals current multiplied by the resistance – or, put another way, V = IR.

Panel mount push button A push button that is designed to be mounted inside a case. It

comes with a nut and washer to secure it to a panel.

Piezo A crystal that expands and shrinks when electricity is run through it. It also generates

electricity when it is squeezed or bent.

Potentiometer A type of resistor with an adjustable knob to vary the resistance of current.

Pull-up resistor A resistor that is connected to the high voltage in a circuit, which sets the

default state of the pin on that circuit to HIGH. The resistor is usually 10kΩ.

Pulse width modulation (PWM) How the Arduino board generates an output signal between

0V and 5V. The signal switched quickly between LOW and HIGH, and the resulting output

voltage is between two voltages.

Red-green-blue light-emitting diode (RGB LED) A signal LED with four legs that contain

three lights: one red, one green and one blue. The three lights share either a common anode

or a common cathode.

Resistor An electrical component that resists current in a circuit. For example, LEDs can be

damaged by too much current, but if you add a resistor with the correct value to the LED circuit

to limit the amount of current, the LED is protected. Resistance is measured in ohms or Ω. You

need to pick a resistor with the correct value to limit the current through a circuit; the value of a

resistor is shown by coloured bands that are read from left to right.

256
© 2019 Exceed Robotics TM

Sensor A device that detects something in the real world such as light, sound or movement

and translates it into an electrical signal. Examples include potentiometers and light-dependent

resistors.

Serial communication A way that two devices, such as a computer and an Arduino board,

can send and receive data to each other. One piece of data is sent at a time.

Servo A motor that can be controlled to rotate to a specific position. It usually can’t rotate more

than 180 degrees.

Shift register A device that can control multiple outputs with relatively few inputs. It is

commonly used to control a large number of LEDs.

Sketches Arduino programs. The name comes from the quick drawing artists make.

Soft circuit Circuits built with flexible materials such as conductive thread and fabric. Soft

circuits are often used in projects that are going to be worn.

Surface-mount device (SMD) One possible shape of an IC chip or another component such

as a resistor. It is made for soldering onto a flat surface without any legs being inserted into

holes on a circuit board.

Switch A component that either disrupts or redirects the flow of current in a circuit.

Tactile pushbutton A type of switch. A push to break pushbutton interrupts the flow of current

in a circuit when it is pressed. A push-to-make pushbutton does the opposite and interrupts

current only when it is not pressed.

Two-dimensional array Data stored in rows and columns, like in a spreadsheet.

Variable A code construct that holds a value that can be changed. For example, the variable

green LED stores number 4.

Voltage The difference in electrical energy between two points in a circuit. It is the electrical

equivalent of water pressure in pipes, and it is this pressure that causes a current to flow

through a circuit. Voltage is measured in volts (V).

Voltage divider A circuit that outputs a fraction of the input voltage. It is a useful circuit for

translating a change in resistance to a change in voltage.

257
© 2019 Exceed Robotics TM

Thanks to these resources used for information and images put together in this

handbook:

http://onlineresize.club/pictures-club.html

http://www.resistorguide.com/resistor-color-code/#4_band_resistor

http://interactionstation.wdka.hro.nl/wiki/Arduino_basics_workshop

https://store.arduino.cc/usa/

https://wiki.keyestudio.com/Ks0084_keyestudio_New_sensor_kit_with_2560_R3

https://components101.com/microcontrollers/arduino-uno

https://electronicsclub.info/circuitdiagrams.htm

https://www.diffen.com/difference/Current_vs_Voltage

https://www.tutorialspoint.com/arduino/arduino_functions.htm

https://startingelectronics.org/software/arduino/learn-to-program-course/15-functions/

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/all

http://www.learningaboutelectronics.com/Articles/What-is-negative-voltage

https://www.redbubble.com/people/lessonhacker/works/11635070-programming-symbols-coding-

literacy?p=poster

https://en.wikipedia.org/wiki/Schematic

https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all

https://www.thoughtco.com/what-is-a-schematic-diagram-4584811

http://onlineresize.club/pictures-club.html
http://www.resistorguide.com/resistor-color-code/#4_band_resistor
http://interactionstation.wdka.hro.nl/wiki/Arduino_basics_workshop
https://store.arduino.cc/usa/
https://wiki.keyestudio.com/Ks0084_keyestudio_New_sensor_kit_with_2560_R3
https://components101.com/microcontrollers/arduino-uno
https://electronicsclub.info/circuitdiagrams.htm
https://www.diffen.com/difference/Current_vs_Voltage
https://www.tutorialspoint.com/arduino/arduino_functions.htm
https://startingelectronics.org/software/arduino/learn-to-program-course/15-functions/
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/all
http://www.learningaboutelectronics.com/Articles/What-is-negative-voltage
https://www.redbubble.com/people/lessonhacker/works/11635070-programming-symbols-coding-literacy?p=poster
https://www.redbubble.com/people/lessonhacker/works/11635070-programming-symbols-coding-literacy?p=poster
https://en.wikipedia.org/wiki/Schematic
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all
https://www.thoughtco.com/what-is-a-schematic-diagram-4584811

258
© 2019 Exceed Robotics TM

