ROBOTICS 12-15 Years Old

ROBOTICS 12-15 Years Old

Program Overview

Exceeders 12 curriculum is for students who are between 12-15 years old. The curriculum is 96 weeks long divided in 3 modules. It starts with coding pre-assembled robots to learn fundamentals of C language in Robotics, then moves on to Mechanics, CAD Design and 3D Printing where it teaches concepts of Design, Dimensioning and Tolerancing. It then advances to Arduino Microcontrollers to teach advanced C coding for Robotics as well as Electronics. Finally, students are given a project that requires CAD Design, Electronics and Software to graduate.

The program runs once per week. Homework is an essential part of the program requiring 1-1.5 hours per week on average. Classes are 6 students maximum, each student will be working on the projects individually. Presentations and Competitions are an integral part of the curriculum.

Program Highlights

  • No prior experience needed
  • Fun and engaging courses using numbers, geometry and logic in Robotics
  • Modules in Coding, Electronics, CAD and 3D Printing
  • Option to continue to Workshop and Artificial Intelligence
  • 6 kids maximum per class
  • Students work individually on projects
  • Program includes competitions with prizes

There is a total of 3 modules in the Exceeders 12 curriculum, each module is 12 weeks. Curriculum is 96 weeks.

Module 1: Advanced Coding

The first module introduces students to coding and syntax. In this module, students are again given fully built robots and are required to use coding to accomplish projects such as smart factory and radio-controlled robots. Concepts of variables and functions are covered within this module.

Module 2: CAD Design and Mechanics

The second module introduces students to CAD design and 3D Printing. Int his module, students are shown how to use computers and CAD (Computer-Aided Drafting) software to create parts and robots. They will also learn dimensioning and tolerancing which are absolute necessity to fit parts. At the end of this module students are able to design parts, assemble them to create their own robots.

Module 3: Microcontrollers

This module is the most advanced coding and electronics module in the curriculum. It teaches students how to use Microcontrollers which act as programmable brain for any given robot. Numerous sensors and motors can be controlled using Microcontrollers to create autonomous robots. Concepts such as Input/Output, Digital/Analog, Voltages, Circuits, Resistors are introduced in this module. By the end of this modules students are ready to design, create and code many robots.

Module 4: Capstone Project

In this final module, students are given their graduation project which includes design, assembly, 3D printing, electronics and coding. This project sums up the 3 aspects of Robotics (Mechanics, Electronics, Software). Students work independently on their capstone robot. Once completed, they are shared on our Social Media for voting. Student with highest vote and highest complexity wins the final competition.

All graduate students get their curriculum certificate along with the transcript of all completed modules.

What is next?

Once graduated, students who would like to continue can sign up for the Exceeders Workshop where they are given real-world problems to solve. They select their challenge from list of given projects or they can bring their own project for approval. Students are responsible for research on their project, creating BOM (Bill of Material). We help them get the parts, but they need to create progress reports and track financials of their projects. It is very similar to a Master’s Thesis. Students who complete the workshop are eligible to start the Artificial Intelligence curriculum where they use Python language and Raspberry Pi in combination with Arduino Microcontrollers to create AI projects such as self driving cars, face/speech detection…etc.

A reason to learn Math and Sciences

Exceeders 12 curriculum deals greatly with numbers, geometry and functions. As an example, in a given robot, gears are used to transfer power. Based on the number of teeth, students need to calculate the number of rotations of connected gears. They then need to estimate the number of rotations of gears for a given arm movement. The predictions they make is based on extrapolation which is the initial concept in functions and relations.

Learning Coding, CAD and Electronics

With increasing demand in Robotics, children benefit greatly by learning the essential skills from childhood. Our modular approach, combined with homework, teaches the students C programming language to be used in Arduino Microcontrollers, as well as CAD software to design and create parts, and Electronics to connect motors and sensors to the board. Since our teaching is very application-based and hands-on, students develop a visual understanding which helps them greatly when they learn the theory of the sciences.

Discover their hidden STEM interest and nourish it

Some kids show early signs of interest in Science by asking many related questions, some don’t. Our experience shows the earlier kids are placed in a program that tickles their curiosity, the more interested they become in it. Our job as educators is to give the kids challenges that interest them, then help them plan a solution, let them comfortably try methods they think would work, encourage them when they fail to try a different solution and cheer them on the successful completion of the challenge. Most often when kids believe they are good at something, they will pursue it and it becomes part of their life. The earlier they start before other hobbies (such as gaming) becomes their main interest, the easier it is to create the long-term interest.

Make them a decision maker

Most kids are either afraid of problems or look for an easy way out of them. The first reaction is usually to give up and do something else. Fortunately, Robotics has a component called Programming which uses logic to create a path to the goal. The logic gives students an indirect path to think of a solution. Think of it as a given set of tools that can be used to do the job. The art is to select the right tools in the right order for an easier way of completing the job. When logic and CAD design are combined, students use imagination to create a robot and logic to get the robot to accomplish a task. During this journey, they are encountered with numerous problems and are guided to solve them. Sometimes they get frustrated and emotional, but that all is ok since that means they care. Going through such exercises are like a 101 workshop in problem-solving making them fearless of tackling the unknowns.

Engineering For Kids Complements Conventional Classroom Learning